Инновационные технологии в энергетике. Инновации и прорывные технологии в электроэнергетике. Скорость внедрения инноваций далека от желаемой

Проблему получения энергии решали за счёт наращивания мощностей, действующих технических средств. Уровень технологий не позволял эффективно использовать энергетические запасы. Наблюдались потери, К.П.Д. использования даров природы был очень низким. Ещё в прошлом веке возникла острая необходимость внедрения высокоэффективных методов использования нефти, угля, воды, обеспечивающая внедрение инноваций.

Запасы природных ископаемых планеты ограничены. Они кончаются. Получать энергию из оставшейся части, станет сложнее. Поэтому вместе с улучшением технологий, обеспечивающих старые способы энергетик, идёт постоянный поиск альтернативных способов решения проблемы, внедрения качественных инноваций.

Мировые инновации 2018

Достижения в области энергетик наблюдаются в разных странах, помогая развитию техники, бизнеса. Они решают конкретные задачи, входящие в следующие направления инноваций мира:

  • Создание высокопроизводительных, безопасных производств выпуска конкретных объёмов энергии.
  • Анализ и расчет разумных (минимальных) инноваций.
  • Развитие других способов передачи энергии на расстояния с минимальными потерями.
  • Создание экологической безопасности для живых организмов.
  • Внедрение единой энергосистемы с умной цифровой технологией управления.

В ближайшее время полного отказа от углеводородных энергетик не планируется, но поиск альтернативных источников, их внедрение в жизнь идёт полным ходом.

Внимание. По прогнозам специалистов новые технологии уже в 2020 году повысят степень нетрадиционных методов в энергетике до 15 %.

Объём мировых инноваций формируется за счёт государственных вложений. Частные компании тоже финансируют современные разработки. Корпорация Google предложила проект получения энергии за счет оригинальной конструкции змея-аэроплана. Мощность одного устройства составляет 600 кВт. Оно позволяет удовлетворить потребности стандартного многоквартирного дома. Или предложения специалистов Японской компании по использованию новейших способов беспроводной передачи энергии. Даже фантастические идеи реализуются, принесут прибыль, когда будут освоены капитальные инновации.

Направление

Ведутся разработки в многочисленных направлениях оптимальных энергетических инноваций. Денежные вложения, оговариваемые многочисленными программами стран, предлагается направлять на улучшение технологических процессов старых способов добычи энергии и внедрением в жизнь новых достижений науки. Главными направлениями считаются следующие предложения:

  1. Использование нефти. Цена на нефть является главной движущей силой развития промышленности. Постоянно идёт поиск новых технологий, обеспечивающих повышение процента добычи нефти из старых и новых скважин. Важно отметить , что благодаря инновациям внедрён новый принцип третичной обработки нефтеносных пластов, делающий скважины рентабельными. Должное внимание уделяется вопросам экологии.
  2. Гидроэлектростанции. Природные условия определяют решение использования старинных способов энергетик. Для возведения гидроэлектростанций, реконструкции старых объектов применяются современные материалы, неожиданные конструктивные решения. Используя осмос эффект, предлагается возводить их в открытом море с солёной водой.
  3. Устройства угольной промышленности. Старинный вид топлива добывается с помощью современных лазерных комбайнов. Рядом с шахтами формируются экологически безопасные, используемые в хозяйстве зоны.
  4. Создание устройств на использовании излучении солнца. Внедрение современных технологий приручения солнечной радиации полезно для районов с достаточным количеством солнечных дней в году. Всё чаще можно встретить частные владения, тепличные комплексы, оборудованные собственными устройствами накопления запасов солнечной радиации.
  5. Использование силы ветра. Энергетика, созданная на основе силы ветра, стала привычным видом формирования запасов мощности в разных странах. Новейшие разработки постоянно внедряются при создании новых типов двигателей, систем накопления, передачи.
  6. Создание осмостанций. В их основе лежит пополнение запасов энергетики за счёт разницы давлений солёной и пресной воды (осмос эффект). Вращающиеся турбины вырабатывают электричество. Проведённые финансовые расчёты показали, что затраты по сравнению с возведением гидроэлектростанций уменьшаются.

Инициатор

Потребности энергетик ежегодно увеличиваются. Каждая страна проводит тщательный анализ необходимой мощности, зная основные направления в развитии промышленности, научных планах, бытовом использовании. Инициаторами инноваций энергетик являются специалисты конкретной страны, предлагающие обоснованные программы. В странах Европы, Азии активно вкладываются деньги в альтернативные виды получения энергии ветра, солнца. Это Германия, Швеция, Италия, Испания. С появлением современного оборудования возросло количество солнечных станций на территории Америки. Уменьшилась их стоимость. Половину рынка объёмов солнечной мощности используют в Китае, Японии. Продолжает расти использование геотермальных источников в Ирландии, Исландии. Инновации в разработку новых видов тепловых насосов инициировали внедрение геотермальной силы на территориях России, Белоруссии, Украины. По инициативе Министерства энергетики России разработана специальная дорожная карта «Энерджтнет», формирующая рынок электроэнергии будущего. Усилиями специалистов Интер РАО ЕЭС создан фонд «Энергия без границ», предусматривающий модернизацию старых методов энергетик, внедрение альтернативных, более эффективных, экологически безопасных способов.

Краткое описание

Энергетические проблемы повседневной жизни общества требуют разработок и эффективного внедрения альтернативных способов пополнения энергетических запасов. Природные запасы (нефть, газ, уголь) постепенно уменьшаются, становится важным первенство в освоении новых возможностей. Сейчас это следующие инновации в энергетике:

  • Использование ударной силы волны (фрекинг). Технология фрекинга называют перспективным будущим нефтегазовой индустрии, открывающей безграничные перспективы для сланцевой революции добычи энергии земли. Вместо традиционного применения, искусственно созданных потоков воды, для разрыва пласта на глубинах до 1500 м используется ударная волна. Главным разработчиком технологии назначена компания Super Wave Technology, расположенная в Индии.
  • Замена бензина биотопливом. Чаще всего в качестве биотоплива используется этанол, биодизель. Их стоимость определяется текущим значением цены на нефть. Поиск новых видов биотоплива проводится в разработках НИОКР разных стран. В Техасском университете создан новый вид дрожжей, позволяющий выпускать дешёвый вид биотоплива, как источника энергии, получаемого из живых организмов (растений, животных). Их не менее важным достоинством является способность уничтожать вредоносные загрязнения нефтью, химическими соединениями. Сейчас учёные изучают свойства бактерии Oleispira antartica для использования её в условиях низких температур Заполярья.
  • Дальнейшее развитие атомных энергетик, использование физических свойств водорода, мечты о новых видах энергии, полученных на других планетах.

Бюджет

Планирование объёмов денежных вложений в развитие энергетики стало обязательным в экономике любой страны. В первую очередь это определяется выбранным направлением инноваций, оценкой необходимых денежных сумм. В США планируется увеличить средства на развитие крупнейшего солнечного проекта в штате Вирджиния. Два объекта (Pleinmont I и II), входящие в состав солнечной станции мощностью 500 МВт, будут оснащены самыми современными солнечными панелями, устройствами хранения силовых запасов энергетик. Прибыль от продажи такой энергии быстро окупит все затраты. В ближайшем будущем США увеличит долю энергии из возобновляемых источников с 13 % до 18%.

По уровню планируемых на развитие инноваций лидируют Китай, Индия, Англия, Италия, Германия.

Интересно. Оценка МВФ на 2018 год государственных субсидий для инноваций в энергетику даёт величину свыше 10 млн. долларов в минуту.

В России отсутствует системный подход поддержки проекта «Энергоэффективность». Общие денежные вложения государства упали почти во много раз (с 7,1 млрд. руб. до 140 млн. руб. на 2016 год). Но при этом наблюдается рост заводов-производителей газового оборудования, приборов обработки воды, КИПиА. Одним из поставщиков подобного оборудования является компания ООО «РОСС» ross.com.ru/difmanometr-dsp-4sg-m1 (г. Белгород Тел. 4722 40-00-70). Компания предоставляет гарантию качества и полный комплект документов предоставляемых заводами-изготовителями.

Особенности развития энергетики в России

Наличие разнообразных климатических условий на большой территории России требует особенного отношения к анализу возможных способов производства энергии. Только на отопление жилища ежегодно надо потратить миллиарды, не говоря о проблемах промышленности, сельского хозяйства, содержании армейского оборудования. Российская энергетика находит решение в развитии старых способов и использование любых современных инноваций в области применения технологий, основанных на новых физических принципах получения энергии. Организуются специальные фонды инноваций, открываются НИОКР по созданию новых материалов, необходимых при модернизации плотин, нефтяных вышек, техники для добычи угля. Это сверхстойкие нано структурированные стали, много композиционные защитные покрытия, оригинальные солнечные панели, новейшие системы ветряков, современные тепловые насосы. Разработке подлежат все направления инноваций в технологии получения энергии, повышения эффективности её использования при передаче на большие расстояния, свойственные России. Уникальной разработкой России (в мире отсутствуют аналоги) называют метод петротермальной энергетики (тепловая сила сухих горных пород в земной коре). Разработки ведутся по программе «Термолитэнерго».

В ближайшее время основным направлением получения энергии в России останется нефть. От её цены, объёмов добычи с помощью новейших технологий будет зависеть уровень развития техники, жизни.

Инновационная энергетика – выработка тепла и электроэнергии на энергетических установках, функционирующих на основе ВИЭ (возобновляемых источников энергии). , фотоэлектричество – полупроводниковые преобразователи солнечной энергии, биотехнологии – энергоносители из возобновляемого сырья – биотоплива, нанотехнологии – все это вопросы инновационной энергетики, экономически и социально востребованные. Суть проблемы, сформировавшейся в последнее десятилетие, – человечество вынуждено искать альтернативные источники энергии. Углеводороды – нефть, газ, уголь создавали и создают основу существования общества. Мы заправляем примерно 600 млн автомобилей, делают полимеры, удобрения (на 80% состоят из газа), лекарства, пестициды и т.д. Все это химические производные исходных веществ: природного газа, нефти, и вот сейчас в какой-то степени – растительного сырья. Вся система обеспечения энергетикой живых существ – , производство пищевых продуктов – это один из разделов современной энергетики. На каждую калорию, которую мы потребляем в качестве пищи, мы затрачиваем около 10–12 калорий угля, нефти и газа. Поэтому проблема поиска альтернативных возобновляемых источников энергии пронизывает все сферы современного общества.

«Существует реальный интерес к проблематике использования биомассы для производства электроэнергии и тепла. Он настолько серьезен, что получил поддержку в деятельности Рабочей группы по энергоэффективности при Президенте РФ. В настоящий момент, этой рабочей группой рассматриваются в качестве типовых, приоритетных и социально-значимых – шесть проектов. Один из них носит название – «Инновационная энергетика», – сказал директор Департамента Минэнерго России Сергей Михайлов.

Правительство РФ в апреле 2010 г. внесло проект постановления, с появлением которого процесс использования возобновляемых источников энергии должен реально осуществиться.

Что касается биотопливных технологий, то аналитики видят значительный потенциал в производстве биотоплива в Индии, кроме того, свой вклад в производство внесут такие страны, как Аргентина, Китай, Колумбия, Франция, Индонезия, Малайзия, Филиппины и Таиланд. В этом деле Россия пока по большей части находится на стадии академических, научных разработок, например, такой: метан из биомассы – получение топлива и удобрений. В нашей стране было запущено несколько эффективных установок, самая интересная из которых – в Черноголовке работающая электростанция на е с мембранным разделением метана и CO2 и с когенерацией тепла и электричества.

Пока государство подводит нормативную базу для того, чтобы такой науко- и ресурсоемкий проект как инновационная энергетика заработал прибыльно, Siemens уже подписал соглашение с РусГидро и с Ростехнологиями, которые по сути являются государственными предприятиями.

В связи с начальной стадией развития ВИЭ и биотехнологий в России, стоит уделить особое внимание уже оформившимся с точки зрения обширных инвестиций и готового продукта проектам. Ключевой пример – государственная корпорация Роснано, которая инвестирует помимо прочего в такие интересующие нас в данный момент направления модернизации, обозначенные Президентом РФ, как ресурсосбережение и энергоэффективность. Эти направления имеют прямое отношение к инновационной энергетике.

С конца XX в. многие страны запустили развитие нового направления науки и техники. Именно поэтому в президентской инициативе стратегии развития наноиндустрии поставлена задача достижения Россией лидирующей позиции на мировом уровне и формирование собственных рынков нанопродукции. Для чего и была создана госкорпорация «Роснано». Напомним, что нанотехнологии – это возможность создавать новые материалы как конструктор из отдельных микроскопических блоков, вплоть до атомов и молекул. Направление начало развиваться еще в середине прошлого века. Тогда термина нанотехнологии не существовало. Нанометром назвали одну миллиардную часть метра. Это как копеечная монетка по отношению к земному шару.

Энергосбережение и солнечная энергетика – один из приоритетных направлений деятельности Роснано. Уже реализуется ряд проектов, один из них в Санкт-Петербурге, где завершается монтаж оборудования по производству светодиодов, созданных благодаря нанотехнологиям. Роснано призвано раскрыть экономический потенциал научных достижений в области нанотехнологий. Интересно, что т.н. нанолампа стоит 1 тыс. р., а зарубежный аналог – 60 долл. На изобретение российской нанолампы были потрачены 1,8 млрд руб. Нанолампа будет служить в 50 раз дольше обычной – 50 тыс. ч.

renewableЗа последние два года работы в Роснано были одобрены более 70 бизнес-проектов в области нанотехнологий. За каждым из них стоят новый завод или расширение уже действующего производства в 26 регионах страны и инновационные продукты. Сегодня общий бюджет утвержденных проектов превышает 200 млрд руб., из которых госкорпорация вкладывает 95. По планам выручка от продажи продуктов этих предприятий составит к 2015 г. 140 млрд руб. Всего к 2015 г. будут инвестированы свыше 310 млрд руб. в примерно 93 проекта.

Один из последних инвестиционных проектов при поддержке Роснано серии альтернативной энергетики и энергосбережения – на базе технологии «тонких пленок». Основой технологии тонких пленок служит микроаморфный кремний. Обычный аморфный кремний преобразует свет только синей части спектра. При добавлении нано слоев кристаллического кремния солнечная батарея использует и другие части видимого спектра солнца. Эффективность фотоэлементов увеличивается в полтора раза по сравнению с существующими аналогами.

Несмотря на пока незначительный спрос на фотоэлектрические изделия на внутреннем рынке, российские компании осуществляют производство кремниевых пластин, использующихся для выпуска фотоэлектрических элементов. Помимо экспорта кремния для изготовления фотоэлектрических батарей, ряд российских предприятий в 2009 г. осуществлял экспорт готовых изделий. Суммарный объем экспорта фотоэлектрических батарей в указанный период составил 12 454 шт. Ведущий экспортер солнечных батарей из России по итогам 2009 г. – ООО «Солнечный ветер».

Еще один инвестпроект Роснано, имеющий отношение к инновационной энергетике, – солнечные батареи для космических аппаратов. Эффективность батарей на основе арсенида галлия гораздо выше, чем у кремниевых, а срок службы в космосе возрастает до 15 лет. Этот факт значительно увеличит кпд и срок службы кораблей. Создание солнечных батарей для космических аппаратов снизит зависимость российской космической отрасли от иностранных поставщиков. Полый кремний – основной полупроводниковый материал, применяемый в современной солнечной энергетике и микроэлектронике. Полый кремний используется для производства почти 90% всех солнечных элементов в мире. Потребность в этих материалах в мире очень высока. Ожидается, что окупаемость проекта составит всего несколько лет.

Проекты на основе энергии солнца, которые вышли на мощное технологическое развитие, потенциально могут обеспечить энергией все человечество.

Задумывались ли вы когда-нибудь о том, сколько электроэнергии вы потребляете в день? Или даже в час, просто сидя дома за компьютером? По данным Google, для обработки 100 поисковых запросов корпорация должна потратить столько же энергии, сколько требуется для 28 минут работы 60-ваттной лампочки. Промышленный сектор, как и общество в целом, переживают значительные перемены: под влиянием роста населения и урбанизации спрос на электроэнергию продолжает расти очень быстрыми темпами, и поспеть за ним поможет только еще большая электрификация – в том числе проникновение электричества в те сферы экономики, где ранее доминировали технологии другого рода.

Фото: Unsplash

Эти кардинальные изменения уже сейчас вынуждают энергетические компании не только генерировать достаточное количество электроэнергии, чтобы удовлетворить потребности потребителей, но и разрабатывать технологические решения, способные ответить на вызовы будущего, основными трендами которого станут взаимосвязанность и электрификация. Безусловно, некоторые из этих вызовов могут быть абсолютно разнообразными и комплексными, индивидуальными для каждого рынка, на котором работает крупная энергетическая компания, в то время как другие проблемы могут носить общий характер для всех и могут быть решены на более масштабном уровне. Энергетические компании должны работать над тем, чтобы давать предложения потребителям, которые нуждаются в них больше всего, но также важно разрабатывать и свои решения или сотрудничать со стартапами, которые находятся в авангарде развития технологических инноваций.

Инновации, способные помочь в решении проблем, связанных с этими трендами, можно разделить на две категории:

  1. , отвечающие на уже существующие вызовы, будь то дроны, обследующие дымовые трубы электростанций, или энергораспределительные объекты, если говорить об энергетическом секторе;
  2. новые продукты, созданные с целью дальнейшего развития отрасли, например, работающие на базе технологий (Internet of Things, IoT).

Стартапы могут сыграть ключевую роль в каждой из этих категорий.

Internet of Energy

Говоря о нашем будущем, где будут доминировать электрификация и взаимосвязанность, нельзя не упомянуть IoT, который позволяет «умным» устройствам взаимодействовать друг с другом и обмениваться нужной информацией, создавая при этом единую сеть. Представьте, к примеру, что со смартфона можно будет не только управлять бытовой техникой, но и отслеживать ее энергопотребление.

По мере того, как жилые и офисные здания становятся «умнее» за счет IoT-технологий, энергопотребление становится рациональнее, а работа сети – более надежной и сбалансированной.

Заручившись помощью перспективных стартапов в этой сфере, каждая энергетическая компания имеет возможность использовать те значительные объемы данных, которые она ежесекундно получает, более эффективно, в том числе для поддержки передовых услуг и решений в области энергоснабжения.

Возобновляемое будущее

Сектор возобновляемой энергетики, каким бы молодым он ни был, станет центральной инновационной площадкой для создания новых решений. В экологической и социально-экономической пользе ВИЭ сегодня уже не приходится никого убеждать: возобновляемая энергетика развивается даже в странах с существенными запасами нефти и газа. Сама идея ВИЭ глобально меняет рынок электроэнергетики, ведь теперь поставщиком энергии может быть не только крупная компания, но и любой человек, установивший на крыше дома солнечную панель.

Фото: Unsplash

В сочетании с накопителями энергии и инновационной системой V2G (vehicle-to-grid), позволяющей заряжать электромобиль и при необходимости возвращать хранящуюся в аккумуляторе энергию в сеть, объекты возобновляемой микрогенерации способны создать самодостаточную энергетическую цепь, элементы которой смогут подпитывать друг друга. Решения, направленные на усиление распространения ВИЭ и делающие процесс генерации электроэнергии более открытым для потребителей, желающих производить свою электроэнергию, находятся в числе перспективных направлений работы для стартапов.

К примеру, в 2016 году Билл Гейтс, Джефф Безос и другие главы крупнейших создали специальный фонд для стартапов, работающих над решением проблем развития возобновляемой энергетики, в частности, над проблемой емкости хранилищ. Инвестиции в этот фонд составили миллиард долларов. Фонд устроен по принципу «терпеливого капитала», то есть инвесторы готовы к тому, что их инвестиции окупятся не ранее чем через 20 лет.

Будущее электромобилей

Немаловажную роль играет и электрическая мобильность, а именно электромобили и связанная с ними инфраструктура, которые открывают многочисленные возможности для стартапов в этой области. Некоторые из них уже работают над запуском собственных моделей беспилотных электромобилей. Наше понимание вызовов, стоящих перед современными технологиями, позволяет нам, среди прочего, находить решения для минимизации времени зарядки автомобиля, уменьшения веса батареи, увеличения ее мощности без дополнительной зарядки.

Фото: Unsplash

Одно из таких решений, например, разрабатывается канадским стартапом, работающим над уменьшением стоимости литий-ионной батареи посредством совершенствования производственных процессов. За период с 2011 года он привлек более 15 миллионов долларов инвестиций, включая частные вложения, исследовательские гранты и средства, полученные по результатам IPO. Мы уже можем наблюдать влияние, которое подобные технологии оказывают на автомобильную индустрию, где все больше крупных производителей работают над выпуском своих электромобилей.

Энергетика ждет стартапы

Энергетические компании сейчас полностью вовлечены в разработку своих подходов к отбору и внедрению инновационных решений, предлагаемых стартапами. Так, в октябре 2017 года мы открыли свой инновационный хаб в «Сколково» для продвижения разработок в энергетической отрасли, а также для взаимодействия со стартапами. Мы начали сотрудничать со стартапом GeoScan, предложившим использовать искусственный интеллект для автономного пилотирования дронов при осмотре дымоходов электростанции. Это решение интересно тем, что задействует квадрокоптеры, которые выполняют осмотр дымоходов на высоте до 320 метров без участия промышленных альпинистов.

Сегодня стартапы в области энергетики проходят через то, через что в свое время прошла IT-индустрия в 1980-х: тогда люди, занимавшиеся разработками в этой сфере, не могли знать, станут ли их решения основой цифровой трансформации начала 2000-х. Глобальные изменения в энергетике неизбежны и крайне необходимы, поэтому шанс внести свой вклад есть у каждого из нас здесь и сейчас.

Но при этом запрос на перспективные инновационные темы исследований в энергетике есть. Драйверами здесь выступают национальные программы поддержки инвестиций, цифровизация отрасли и растущие внешние рынки распределенной энергетики.

Ненаучный НИОКР

Первый и очевидный индикатор инновационности любой компании – это расходы на НИОКР. Именно они в первую очередь должны отражать потребность компаний в инновационных решениях. Но по факту доля этих затрат у российских энергетиков не значительна. Так, «Россети» тратят ежегодно на всю программу НИОКР около 1,0 млрд руб., «РусГидро» – 0,4 млрд руб., «Интер РАО» – 0,2 млрд руб., «Газпром энергохолдинг» – 0,35 млрд руб.

На практике большая часть этих средств (до 80 %) носит прикладной характер и идет на разработку обновленных линеек используемых сейчас видов оборудования и требований к ним. Энергокомпании заказывают исследования у научных и научно-производственных коллективов для создания оборудования с заданными функциями или программного обеспечения по известному техническому заданию.

НИОКР энергокомпаний в основной массе осуществляются на базе фундаментально исследованных научных принципов и испытанных технологических процессов. С одной стороны, такие исследования едва ли переведут технологическое развитие на новый уровень, но, с другой, серьезно повлияют на рынок оборудования, формируя актуальный технический и конкурентный ландшафт производителей.

Так, например, технологические стандарты для интеллектуального учета электроэнергии и соответствующие требования основных покупателей таких систем – сетевых и сбытовых компаний, могут определить не только предпочтительные технологии передачи данных (радио, PLC, 4 / 5G), но и контуры будущего рынка производства оборудования ежегодным объемом 40‑60 млрд руб. на десятилетие вперед.

Важно, что инициатором конкретной работы может быть и энергокомпания, и сам разработчик перспективного решения. Заказчик же, заинтересованный в запуске нового устройства в промышленную эксплуатацию, определяет бюджет НИОКР и проводит необходимые закупочные процедуры.

Вертикально интегрированные инновации

Для таких компаний, как ГК «Рос­атом», представляющих собой комплекс вертикально интегрированных предприятий ядерной энергетики, затраты НИОКР доходят до 4,5 % от выручки (около 40 млрд руб. в год) и становятся стандартным инструментом финансирования входящих в госкорпорацию отраслевых научно-исследовательских институтов.

При этом «Росатом» во многом изыскивает ресурсы для инновационных разработок в федеральном бюджете: так, например, он претендует на 200 млрд руб. в разрабатываемой сейчас национальной программе «Развитие атомной науки, техники и технологий». Средства должны пойти прежде всего на развитие нового типа реакторов – на быстрых нейтронах.

Расходы на НИОКР «Росатома», в отличие от других российских энергокомпаний, в абсолютных показателях сравнимы с лидерами зарубежной энергетики. Французская EDF тратит на исследования 0,9 % от выручки, испанская Iberdrola – 0,8 %, шведский Vattenfall – 0,5 %, канадская HydroQuebec – 0,9 %. Надо отметить, что многие их этих компаний управляют широко диверсифицированным энергетическим бизнесом, а большинство контролируются национальными правительствами. А значит, затраты на науку и развитие технологий идут рука об руку с государственными приоритетами.

Надо отметить, что среди глобальных лидеров инноваций в энергетике практически нет исключительно сетевых или, например, генерирующих компаний. Основная масса компаний ТЭКа в мире, вкладывающих значительные средства в НИОКР, либо вертикально интегрированные крупные структуры, либо работают в отраслях с экспортным потенциалом, таких, как, например, добыча нефти и газа.

Нацпрограммы как двигатель НИОКР

В электроэнергетике на сегодняшний день в мире больше других тратят на прикладную науку компании, работающие в сфере возобновляемой энергетики. Это, например, канадская Canadian Solar, американская First Solar, китайская Guodian Technology, датская Vestas, испанская Siemens Gamesa и другие. Они занимаются строительством и эксплуатацией солнечных или ветроэлектростанций, востребованных в рамках национальных программ развития энергетики.

Есть амбиции войти в эти списки и у отечественных лидеров сегментов ВЭС и СЭС – «Хевел», «Солар Системс», «НоваВинд», которые пока сконцентрированы на реализации первого этапа программы поддержки ВИЭ в России объемом в 5,5 ГВт.

Серьезные инвестиции в НИОКР могут потребоваться и в рамках одобренного российским правительством плана модернизации ТЭС. Для повышения топливной эффективности электростанций нужны уникальные отечественные производства газовых турбин большой мощности и их компонентов. Задача стоит действительно амбициозная: например, итальянскому производителю Ansaldo понадобилось 14 лет (с 1991 по 2005 г.) на обретение технологической независимости от лицензионных газовых турбин Siemens. Претендуют на этот рынок и «Силовые машины» и «Ростех», хотя во многом они ориентируются на государственные субсидии.

Регулируемая наука

Таким образом, финансирование НИОКР в отношении инновационных для России технологий – в возобновляемой энергетике и парогазовом цикле, становится возможным благодаря регуляторным решениям. Правительство запустило механизмы поддержки возобновляемой энергетики и модернизации тепловых электростанций, разрешив использовать оборудование, произведенное только в России. Источником для финансирования как строительства, так и НИОКР, станут в конечном итоге дополнительные платежи потребителей, собранные на оптовом рынке электрической энергии.

Без подобных мер стимулирования инвестиций энергетики вынуждены существовать в жестких тарифных ограничениях, не имея ресурсов и стимулов для инвестиций в развитие. Кроме того, большая часть их бизнес-процессов регламентирована почти всеобъемлющим спектром отраслевых требований. Это и стандарты для применяемого оборудования, и требования к безопасности, нормы проектирования объектов, требования к ремонту и обслуживанию производственных активов, антимонопольные ограничения в работе с потребителями и поставщиками, стандарты обязательного информационного обмена с регуляторами и инфраструктурой рынка.

Все эти факторы не создают благоприятной среды для инновационного развития и вложений в новые технологии. Компании ограничивают свои затраты первоочередными нуждами и капитальными вложениями на поддержание ресурса оборудования.

Государственный венчур

Неудивительно, что в условиях тарифного регулирования и строгого контроля отрасли инновации необходимо искусственно стимулировать на уровне законодательства или специальных распоряжений правительства.

В 2017 г. президент России поручил крупнейшим государственным корпорациям – «Ростеху», «Роскосмосу», «Росатому», Объединенной авиастроительной корпорации и Объединенной судостроительной корпорации создать собственные венчурные фонды.

Из энергокомпаний в этом списке пока только «Росатом», запустивший фонд на 3 млрд руб., но этот инструмент очень важен и нужен отрасли. Венчурное инвестирование позволяет корпорации-заказчику, входя небольшой долей в капитал разработчика перспективного продукта, выбирать и контролировать наиболее важные проекты. Команда основателей при этом сохраняет контроль в проекте и остается заинтересованной в коммерческой реализации технологии.

Пока этот рынок в России совсем невелик и составляет около 20 млрд руб. в год, проявляясь в основном в сферах ИТ, транспорта и финансов. Очевидно, что госкомпании даже небольшими усилиями могут серьезно изменить здесь расстановку сил, создав новую инфраструктуру для поиска и отбора проектов.

Если догонять, то быстро

Несмотря на все барьеры, перспективные направления для исследований в энергетике имеются. Это упомянутые уже технологии ВИЭ и газовых турбин большой мощности, технологии топливных ячеек, системы хранения энергии. Важно, что эти разработки будут иметь и экспортный потенциал.

Одной из более актуальных потребностей отрасли в инновациях является цифровизация энергетики. Прямо сейчас энергетикам нужны разработки отечественного ПО управления электрическими сетями и микроэнергосистемами, систем информационной безопасности критической инфраструктуры, технологии анализа данных и предиктивной аналитики.

Но пока развитие инноваций живет в логике «догоняющей» модели, совершенно не новой для нашей страны. И если рассматривать направления по отдельности, то предпринимаемые усилия выглядят очень скромно. Так, глобальный рынок электрохимических накопителей энергии ежегодно удваивается и в 2019 году приблизится к 8 млрд долл. США. Отечественные же инициативы в этой чрезвычайно перспективной и «горячей» сфере пока сводятся к дорожным картам и неторопливому поиску площадок для размещения пилотных проектов. Хотя именно этот рынок, обладающий серьезным экспортным потенциалом, выглядит наиболее привлекательным для исследований и запуска инновационных производств.

Но о каком бы финансировании инноваций ни шла речь – государственном заказе, корпоративных закупках или привлечении венчурного инвестора, инициатором НИОКР всегда может выступить сам разработчик перспективного решения. Это значит, что технологическое будущее российской энергетики и ее конкурентоспособность на мировой арене находится в общих руках – государства, подконтрольных ему энергокомпаний и проактивных научных коллективов.