Исследовать данные функции. Исследовать методами дифференциального исчисления функцию \(y=\frac{x3}{1-x}\), построить ее график

14.10.2019 Утепление

Исследование функции производится по четкой схеме и требует от студента твердых знаний основных математических понятий таких, как область определения и значений, непрерывность функции, асимптота, точки экстремума, четность, периодичность и т.п. Студент должен свободно дифференцировать функции и решать уравнения, которые порой бывают очень замысловатыми.

То есть данное задание проверяет существенный пласт знаний, любой пробел в которых станет препятствием к получению правильного решения. Особенно часто сложности возникают с построением графиков функций. Эта ошибка сразу бросается в глаза преподавателю и может очень сильно подпортить вашу оценку, даже если все остальное было сделано правильно. Здесь вы можете найти задачи на исследование функции онлайн : изучить примеры, скачать решения, заказать задания.

Исследовать функцию и построить график: примеры и решения онлайн

Мы приготовили для вас множество готовых исследований функций , как платных в решебнике, так и бесплатных в разделе Примеры исследований функций . На основе этих решенных заданий вы сможете детально ознакомиться с методикой выполнения подобных задач, по аналогии выполнить свое исследование.

Мы предлагаем готовые примеры полного исследования и построения графика функции самых распространенных типов: многочленов, дробно-рациональных, иррациональных, экспоненциальных, логарифмических, тригонометрических функций. К каждой решенной задаче прилагается готовый график с выделенными ключевыми точками, асимптотами, максимумами и минимумами, решение ведется по алгоритму исследования функции .

Решенные примеры, в любом случае, станут для вас хорошим подспорьем, так как охватывают самые популярные типы функций. Мы предлагаем вам сотни уже решенных задач, но, как известно, математических функций на свете - бесконечное количество, а преподаватели - большие мастаки выдумывать для бедных студентов все новые и новые заковыристые задания. Так что, дорогие студенты, квалифицированная помощь вам не помешает.

Решение задач на исследование функции на заказ

На этот случай наши партнеры предложат вам другую услугу - полное исследование функции онлайн на заказ. Задание будет выполнено для вас с соблюдением всех требований к алгоритму решения подобных задач, что очень порадует вашего преподавателя.

Мы сделаем для вас полное исследование функции: найдем область определения и область значений, исследуем на непрерывность и разрывность, установим четность, проверим вашу функцию на периодичность, найдем точки пересечения с осями координат. Ну и, конечно же, дальше с помощью дифференциального исчисления: разыщем асимптоты, вычислим экстремумы, точки перегиба, построим сам график.

В данной статье рассмотрим схему исследования функции, а также приведем примеры исследования на экстремумы, монотонность, асимптоты данной функции.

Схема

  1. Область существования (ОДЗ) функции.
  2. Пересечение функции (если имеется) с осями координат, знаки функции, четность, периодичность.
  3. Точки разрыва (их род). Непрерывность. Асимптоты вертикальные.
  4. Монотонность и точки экстремума.
  5. Точки перегиба. Выпуклость.
  6. Исследование функции на бесконечности, на асимптоты: горизонтальные и наклонные.
  7. Построение графика.

Исследование на монотонность

Теорема. Ежели функция g непрерывна на , дифференцированная на (а; b) и g’(x) ≥ 0 (g’(x)≤0) , xє(а; b) , то g возрастающая (убывающая) на .

Пример:

y = 1: 3x 3 - 6: 2x 2 + 5x.

ОДЗ: хєR

y’ = x 2 + 6x + 5.

Найдем промежутки постоянных знаков y’ . Поскольку y’ - элементарная функция, то она может менять знаки только в точках, где она превращается в ноль или не существует. Ее ОДЗ: хєR .

Найдем точки, производная в которых равняется 0 (нулю):

y’ = 0;

x = -1; -5.

Итак, y растущая на (-∞; -5] и на [-1; +∞), y нисходящая на .

Исследование на экстремумы

Т. x 0 именуют точкой максимума (max) на множестве А функции g тогда, когда принимается в этой точке функцией значение наибольшее g(x 0) ≥ g(x), xєА .

Т. x 0 именуют точкой минимума (min) функции g на множестве А тогда, когда принимается в этой точке функцией значение наименьшее g(x 0) ≤ g(x), xєА.

На множестве А точки максимума (max) и минимума (min) именуются точками экстремума g . Такие экстремумы еще называют абсолютными экстремумами на множестве .

Если x 0 - экстремума точка функции g в некотором своем округе, то x 0 именуется точкой локального или местного экстремума (max или min) функции g.

Теорема (условие необходимое). Если x 0 - точка экстремума (локального) функции g , то производная не существует или равна в этой т. 0 (нулю).

Определение. Критическими именуют точки с несуществующей или равной 0 (нулю) производной. Именно данные точки подозрительны на экстремум.

Теорема (условие достаточное № 1). Если функция g непрерывна в некотором округе т. x 0 и знак меняет чрез эту точку при переходе производная, то данная точка есть т. экстремума g .

Теорема (условие достаточное № 2). Пускай функция в некотором округе точки дифференцируема дважды и g’ = 0, а g’’ > 0 (g’’ < 0) , тогда эта точка есть точкой максимума (max) или минимума (min) функции.

Исследование на выпуклость

Функцию называют выпуклой вниз (или вогнутой) на интервале (а, b) тогда, когда график функции располагается не выше секущей на промежутке для любых x с (а, b) , которая проходит чрез эти точки.

Функция будет выпуклой строго вниз на (а, b) , если - график лежит ниже секущей на промежутке.

Функцию называют выпуклой вверх (выпуклой) на промежутке (а, b) , если для любых точек с (а, b) график функции на промежутке лежит не ниже секущей, проходящей через абсциссы в этих точках .

Функция будет строго выпуклой вверх на (а, b ), если - график на промежутке лежит выше секущей.

Если функция в некотором округе точки непрерывна и через т. x 0 при переходе функция изменяет выпуклость то эта точка именуется точкой перегиба функции.

Исследование на асимптоты

Определение. Прямую называют асимптотой g(x) , если при бесконечном удалении от начала координат к ней приближается точка графика функции: d(M,l).

Асимптоты могут быть вертикальные, горизонтальные и наклонные.

Вертикальная прямая с уравнением x = x 0 будет асимптотой вертикальной графика функции g , если в т. x 0 бесконечный разрыв, то есть хотя бы одна левая или правая граница в этой точке - бесконечность.

Исследование функции на отрезке на значение наименьшее и наибольшее

Если функция непрерывна на , то по теореме Вейерштрасса существует значение наибольшее и значение наименьшее на этом отрезке, то есть существуют точки, которые принадлежат такие, что g(x 1) ≤ g(x) < g(x 2), x 2 є . Из теорем про монотонность и экстремумы получаем следующую схему исследования функции на отрезке на наименьшее и наибольшее значение.

План

  1. Найти производную g’(x) .
  2. Искать значение функции g в этих точках и на концах отрезка.
  3. Найденные значения сравнить и выбрать наименьшее и наибольшее.

Замечание. Если нужно произвести исследование функции на конечном интервале (а, b) , или на бесконечном (-∞; b); (-∞; +∞) на max и min значение, то в плане вместо значений функции на концах промежутка ищут соответствующие односторонние границы: вместо f(a) ищут f(a+) = limf(x) , вместо f(b) ищут f(-b) . Так можно найти ОДЗ функции на промежутке, потому что абсолютные экстремумы не обязательно существуют в данном случае.

Применение производной к решению прикладных задач на экстремум некоторых величин

  1. Выражают данную величину через другие величины из условия задачи так, чтобы она была функцией только от одной переменной (если это возможно).
  2. Определяют промежуток изменения этой переменной.
  3. Проводят исследование функции на промежутке на max и min значения.

Задача. Нужно построить площадку прямоугольной формы, использовав а метров сетки, у стены так, чтобы с одной стороны она прилегала к стене, а с остальных трех была ограждена сеткой. При каком соотношении сторон площадь такой площадки будет наибольшей?

S = xy - функция 2 переменных.

S = x(a - 2x) - функция 1-й переменной; x є .

S = ax - 2x 2 ; S" = a - 4x = 0, xєR, x = a: 4.

S(a: 4) = a 2: 8 - наибольшее значение;

S(0) =0.

Найдем другую сторону прямоугольника: у = a: 2.

Соотношение сторон: y: x = 2.

Ответ. Наибольшая площадь будет равна a 2 /8 , если сторона, которая параллельна стене, в 2 раза больше другой стороны.

Исследование функции. Примеры

Пример 1

Имеется y=x 3: (1-x) 2 . Произвести исследование.

  1. ОДЗ: хє(-∞; 1) U (1; ∞).
  2. Общего вида функция (ни четная, ни нечетная), относительно точки 0 (нуль) не симметрична.
  3. Знаки функции. Функция элементарная, поэтому может менять знак только в точках, где она равна 0 (нулю), или не существует.
  4. Функция элементарная, поэтому непрерывная на ОДЗ: (-∞; 1) U (1; ∞).

Разрыв: х = 1;

limx 3: (1- x) 2 = ∞ - Разрыв 2-го рода (бесконечный), поэтому есть вертикальная асимптота в точке 1;

х = 1 - уравнение асимптоты вертикальной.

5. y’ = x 2 (3 - x) : (1 - x) 3 ;

ОДЗ (y’): x ≠ 1;

х = 1 - точка критическая.

y’ = 0;

0; 3 - точки критические.

6. y’’ = 6x: (1 - x) 4 ;

Критические т.: 1, 0;

x = 0 - т. перегиба, y(0) = 0.

7. limx 3: (1 - 2x + x 2) = ∞ - нет горизонтальной асимптоты, но может быть наклонная.

k = 1 - число;

b = 2 - число.

Следовательно, есть асимптота наклонная y = x + 2 на + ∞ и на - ∞.

Пример 2

Дано y = (x 2 + 1) : (x - 1). Произвести и сследование. Построить график.

1. Область существования - вся числовая прямая, кроме т. x = 1 .

2. y пересекает OY (если это возможно) в т. (0;g(0)) . Находим y(0) = -1 - т. пересечения OY .

Точки пересечения графика с OX находим, решив уравнение y = 0 . Уравнение корней действительных не имеет, поэтому эта функция не пересекает OX .

3. Функция непериодическая. Рассмотрим выражение

g(-x) ≠ g(x), и g(-x) ≠ -g(x) . Это означает, что это общего вида функция (ни четная, ни нечетная).

4. Т. x = 1 разрыв имеет второго рода. Во всех остальных точках функция непрерывна.

5. Исследование функции на экстремум:

(x 2 - 2x - 1) : (x - 1) 2 = y"

и решим уравнение y" = 0.

Итак, 1 - √2, 1 + √2, 1 - точки критические или точки возможного экстремума. Эти точки разбивают числовую прямую на четыре интервала.

На каждом интервале производная имеет определенный знак, который можно установить методом интервалов или вычисления значений производной в отдельных точках. На интервалах (-∞; 1 - √2 ) U (1 + √2 ; ∞) , положительная производная, значит, функция растет; если (1 - √2 ; 1) U (1; 1 + √2 ) , то функция убывает, потому что на этих интервалах производная отрицательная. Через т. x 1 при переходе (движение следует слева направо) изменяет производная знак с "+" на "-", поэтому, в этой точке есть локальный максимум, найдем

y max = 2 - 2√2 .

При переходе через x 2 изменяет производная знак с "-" на "+", поэтому, в этой точке есть локальный минимум, причем

y mix = 2 + 2√2.

Т. x = 1 не т. экстремума.

6. 4: (x - 1) 3 = y"".

На (-∞; 1 ) 0 > y"" , следственно, на этом интервале кривая выпуклая; если xє(1 ; ∞) - кривая вогнута. В точке 1 не определена функция, поэтому эта точка не точка перегиба.

7. Из результатов пункта 4 следует, что x = 1 - асимптота вертикальная кривой.

Горизонтальные асимптоты отсутствуют.

x + 1 = y - асимптота наклонная данной кривой. Других асимптот нет.

8. Учитывая проведенные исследования, строим график (см. рисунок выше).

Одной из важнейших задач дифференциального исчисления является разработка общих примеров исследования поведения функций.

Если функция y=f(x) непрерывна на отрезке , а ее производная положительна или равна 0 на интервале (a,b), то y=f(x) возрастает на (f"(x)0). Если функция y=f(x) непрерывна на отрезке , а ее производная отрицательна или равна 0 на интервале (a,b), то y=f(x) убывает на (f"(x)0)

Интервалы, в которых функция не убывает или не возрастает, называются интервалами монотонности функции. Характер монотонности функции может изменяться только в тех точках ее области определения, в которой меняется знак первой производной. Точки, в которых первая производная функции обращается в нуль или терпит разрыв, называются критическими.

Теорема 1 (1-ое достаточное условие существования экстремума).

Пусть функция y=f(x) определена в точке х 0 и пусть существует окрестность δ>0 такое, что функция непрерывна на отрезке , дифференцируема на интервале (x 0 -δ,x 0)u(x 0 , x 0 +δ), причем ее производная сохраняет постоянный знак на каждом из этих интервалов. Тогда если на x 0 -δ,x 0) и (x 0 , x 0 +δ) знаки производной различны, то х 0 - точка экстремума, а если совпадают, то х 0 - не является точкой экстремума. При этом если при переходе через точку х0, производная меняет знак с плюса на минус (слева от х 0 выполняется f"(x)>0, то х 0 - точка максимума; если же производная меняет знак с минуса на плюс (справа от х 0 выполняется f"(x)<0, то х 0 - точка минимума.

Точки максимума и минимума называют точками экстремума функции, а максимумы и минимумы функции – ее экстремальными значениями.

Теорема 2 (необходимый признак локального экстремума).

Если функция y=f(x) имеет в токе x=x 0 экстремум, то либо f’(x 0)=0, либо f’(x 0) не существует.
В точках экстремума дифференцируемой функции касательная к ее графику параллельна оси Ox.

Алгоритм исследования функции на экстремум:

1)Найти производную функции.
2)Найти критические точки, т.е. точки, в которых функция непрерывна, а производная равна нулю или не существует.
3)Рассмотреть окрестность каждой из точек, и исследовать знак производной слева и справа от этой точки.
4)Определить координаты экстремальных точек, для этого значения критических точек подставить в данную функцию. Используя достаточные условия экстремума, сделать соответствующие выводы.

Пример 18. Исследовать на экстремум функцию у=х 3 -9х 2 +24х

Решение.
1) y"=3x 2 -18x+24=3(x-2)(x-4).
2) Приравняв производную нулю, находим x 1 =2, x 2 =4. В данном случае производная определена всюду; значит, кроме двух найденных точек, других критических точек нет.
3) Знак производной y"=3(x-2)(x-4) изменяется в зависимости от промежутка так, как показано на рисунке 1. При переходе через точку x=2, производная меняет знак с плюса на минус, а при переходе через точку x=4 - с минуса на плюс.
4) В точке x=2 функция имеет максимум y max =20, а в точке x=4 - минимум y min =16.

Теорема 3. (2-ое достаточное условие существование экстремума).

Пусть f"(x 0) и в точке х 0 существует f""(x 0). Тогда если f""(x 0)>0, то х 0 – точка минимума, а если f""(x 0)<0, то х 0 – точка максимума функции y=f(x).

На отрезке функция y=f(x) может достигать наименьшего (у наим) или наибольшего (у наиб) значения либо в критических точках функции, лежащих в интервале (а;b), либо на концах отрезка .

Алгоритм отыскания наибольшего и наименьшего значений непрерывной функции y=f(x) на отрезке :

1) Найти f"(x).
2) Найти точки, в которых f"(x)=0 или f"(x) - не существует, и отобрать из них те, которые лежат внутри отрезка .
3) Вычислите значение функции y=f(x) в точках, полученных в п.2), а так же на концах отрезка и выбрать из них наибольшее и наименьшее: они и являются соответственно наибольшим (у наиб) и наименьшим (у наим) значениями функции на отрезке .

Пример 19. Найти наибольшее значение непрерывной функции y=x 3 -3x 2 -45+225 на отрезке .

1) Имеем y"=3x 2 -6x-45 на отрезке
2) Производная y" существует при всех х. Найдем точки, в которых y"=0; получим:
3x 2 -6x-45=0
x 2 -2x-15=0
x 1 =-3; x 2 =5
3) Вычислим значение функции в точках x=0 y=225, x=5 y=50, x=6 y=63
Отрезку принадлежит лишь точка x=5. Наибольшим из найденных значений функции является 225, а наименьшим – число 50. Итак, у наиб =225, у наим =50.

Исследование функции на выпуклости

На рисунке изображены графики двух функций. Первый из них обращен выпуклостью вверх, второй – выпуклостью вниз.

Функция y=f(x) непрерывна на отрезке и дифференцируема в интервале (а;b), называется выпуклой вверх (вниз) на этом отрезке, если при axb ее график лежит не выше (не ниже) касательной, проведенной в любой точке M 0 (x 0 ;f(x 0)), где axb.

Теорема 4. Пусть функция y=f(x) имеет вторую производную в любой внутренней точке х отрезка и непрерывна на концах этого отрезка. Тогда если на интервале (а;b) выполняется неравенство f""(x)0, то функция выпукла вниз на отрезке ; если на интервале (а;b) выполняется неравенство f""(x)0, то функция выпукла вверх на .

Теорема 5. Если функция y=f(x) имеет вторую производную на интервале (а;b) и если она меняет знак при переходе через точку x 0 , тогда M(x 0 ;f(x 0)) есть точка перегиба.

Правило нахождения точек перегиба:

1) Найти точки, в которых f""(x) не существует или обращается в нуль.
2) Исследовать знак f""(x) слева и справа от каждой найденной на первом шаге точки.
3) На основании теоремы 4 сделать вывод.

Пример 20. Найти точки экстремума и точки перегиба графика функции y=3x 4 -8x 3 +6x 2 +12.

Имеем f"(x)=12x 3 -24x 2 +12x=12x(x-1) 2 . Очевидно, что f"(x)=0 при x 1 =0, x 2 =1. Производная при переходе через точку x=0 меняет знак с минуса на плюс, а при переходе через точку x=1 не меняет знака. Значит, x=0 - точка минимума (у min =12), а в точке x=1 экстремума нет. Далее, находим . Вторая производная обращается в нуль в точках x 1 =1, x 2 =1/3. Знаки второй производной изменяются следующим образом: На луче (-∞;) имеем f""(x)>0, на интервале (;1) имеем f""(x)<0, на луче (1;+∞) имеем f""(x)>0. Следовательно, x= - точка перегиба графика функции (переход с выпуклости вниз на выпуклость вверх) и x=1 - так же точка перегиба (переход с выпуклости вверх на выпуклость вниз). Если x=, то y= ; если, то x=1, y=13.

Алгоритм отыскания асимптоты графика

I. Если y=f(x) при x → a , то x=a - есть вертикальная асимптота.
II. Если y=f(x) при x → ∞ или x → -∞ , тогда у=А - горизонтальная асимптота.
III. Для нахождения наклонной асимптоты используем следующий алгоритм:
1) Вычислить . Если предел существует и равен b, то y=b - горизонтальная асимптота; если , то перейти ко второму шагу.
2) Вычислить . Если этот предел не существует, то асимптоты нет; если он существует и равен k, то перейти к третьему шагу.
3) Вычислить . Если этот предел не существует, то асимптоты нет; если он существует и равен b, то перейти к четвертому шагу.
4) Записать уравнение наклонной асимптоты y=kx+b.

Пример 21: Найти асимптоту для функции

1)
2)
3)
4) Уравнение наклонной асимптоты имеет вид

Схема исследования функции и построение ее графика

I. Найти область определения функции.
II. Найти точки пересечения графика функции с осями координат.
III. Найти асимптоты.
IV. Найти точки возможного экстремума.
V. Найти критические точки.
VI. С помощью вспомогательного рисунка исследовать знак первой и второй производных. Определить участки возрастания и убывания функции, найти направление выпуклости графика, точки экстремумов и точек перегиба.
VII. Построить график, учитывая исследование, проведенное в п.1-6.

Пример 22: Построить по изложенной выше схеме график функции

Решение.
I. Областью определения функции является множество всех вещественных чисел, кроме x=1.
II. Так уравнение x 2 +1=0 не имеет вещественных корней, то график функции не имеет точек пересечения с осью Ох, но пересекает ось Оу в точке (0;-1).
III. Выясним вопрос о существовании асимптот. Исследуем поведение функции вблизи точки разрыва x=1. Так как y → ∞ при х → -∞, у → +∞ при х → 1+, то прямая x=1 является вертикальной асимптотой графика функции.
Если х → +∞(x → -∞), то у → +∞(y → -∞); следовательно, горизонтальной асимптоты у графика нет. Далее, из существования пределов

Решая уравнение x 2 -2x-1=0 получаем две точки возможного экстремума:
x 1 =1-√2 и x 2 =1+√2

V. Для нахождения критических точек вычислим вторую производную:

Так как f""(x) в нуль не обращается, то критических точек нет.
VI. Исследуем знак первой и второй производных. Точки возможного экстремума, подлежащие рассмотрению: x 1 =1-√2 и x 2 =1+√2, разделяют область существования функции на интервалы (-∞;1-√2),(1-√2;1+√2) и (1+√2;+∞).

В каждом из этих интервалов производная сохраняет знак: в первом – плюс, во втором – минус, в третьем – плюс. Последовательность знаков первой производной запишется так: +,-,+.
Получаем, что функция на (-∞;1-√2) возрастает, на (1-√2;1+√2) убывает, а на (1+√2;+∞) снова возрастает. Точки экстремума: максимум при x=1-√2, причем f(1-√2)=2-2√2 минимум при x=1+√2, причем f(1+√2)=2+2√2. На (-∞;1) график направлен выпуклостью вверх, а на (1;+∞) - вниз.
VII Составим таблицу полученных значений

VIII По полученным данным строим эскиз графика функции

Как исследовать функцию и построить её график?

Похоже, я начинаю понимать одухотворённо-проникновенный лик вождя мирового пролетариата, автора собрания сочинений в 55 томах…. Нескорый путь начался элементарными сведениями о функциях и графиках , и вот сейчас работа над трудоемкой темой заканчивается закономерным результатом – статьёй о полном исследовании функции . Долгожданное задание формулируется следующим образом:

Исследовать функцию методами дифференциального исчисления и на основании результатов исследования построить её график

Или короче: исследовать функцию и построить график.

Зачем исследовать? В простых случаях нас не затруднит разобраться с элементарными функциями, начертить график, полученный с помощью элементарных геометрических преобразований и т.п. Однако свойства и графические изображения более сложных функций далеко не очевидны, именно поэтому и необходимо целое исследование.

Основные этапы решения сведены в справочном материале Схема исследования функции , это ваш путеводитель по разделу. Чайникам требуется пошаговое объяснение темы, некоторые читатели не знают с чего начать и как организовать исследование, а продвинутым студентам, возможно, будут интересны лишь некоторые моменты. Но кем бы вы ни были, уважаемый посетитель, предложенный конспект с указателями на различные уроки в кратчайший срок сориентирует и направит Вас в интересующем направлении. Роботы прослезились =) Руководство свёрстано в виде pdf-файла и заняло заслуженное место на странице Математические формулы и таблицы .

Исследование функции я привык разбивать на 5-6 пунктов:

6) Дополнительные точки и график по результатам исследования.

На счёт заключительного действия, думаю, всем всё понятно – будет очень обидно, если в считанные секунды его перечеркнут и вернут задание на доработку. ПРАВИЛЬНЫЙ И АККУРАТНЫЙ ЧЕРТЁЖ – это основной результат решения! Он с большой вероятностью «прикроет» аналитические оплошности, в то время как некорректный и/или небрежный график доставит проблемы даже при идеально проведённом исследовании.

Следует отметить, что в других источниках количество пунктов исследования, порядок их выполнения и стиль оформления могут существенно отличаться от предложенной мной схемы, но в большинстве случаев её вполне достаточно. Простейшая версия задачи состоит всего из 2-3 этапов и формулируется примерно так: «исследовать функцию с помощью производной и построить график» либо «исследовать функцию с помощью 1-й и 2-й производной, построить график».

Естественно – если в вашей методичке подробно разобран другой алгоритм или ваш преподаватель строго требует придерживаться его лекций, то придётся внести некоторые коррективы в решение. Не сложнее, чем заменить вилку бензопилой ложкой.

Проверим функцию на чётность/нечётность:

После чего следует шаблонная отписка:
, значит, данная функция не является чётной или нечётной.

Так как функция непрерывна на , то вертикальные асимптоты отсутствуют.

Нет и наклонных асимптот.

Примечание : напоминаю, что более высокого порядка роста , чем , поэтому итоговый предел равен именно «плюс бесконечности».

Выясним, как ведёт себя функция на бесконечности:

Иными словами, если идём вправо, то график уходит бесконечно далеко вверх, если влево – бесконечно далеко вниз. Да, здесь тоже два предела под единой записью. Если у вас возникли трудности с расшифровкой знаков , пожалуйста, посетите урок о бесконечно малых функциях .

Таким образом, функция не ограничена сверху и не ограничена снизу . Учитывая, что у нас нет точек разрыва, становится понятна и область значений функции : – тоже любое действительное число.

ПОЛЕЗНЫЙ ТЕХНИЧЕСКИЙ ПРИЁМ

Каждый этап задания приносит новую информацию о графике функции , поэтому в ходе решения удобно использовать своеобразный МАКЕТ. Изобразим на черновике декартову систему координат. Что уже точно известно? Во-первых, у графика нет асимптот, следовательно, прямые чертить не нужно. Во-вторых, мы знаем, как функция ведёт себя на бесконечности. Согласно проведённому анализу, нарисуем первое приближение:

Заметьте, что в силу непрерывности функции на и того факта, что , график должен, по меньшей мере, один раз пересечь ось . А может быть точек пересечения несколько?

3) Нули функции и интервалы знакопостоянства.

Сначала найдём точку пересечения графика с осью ординат. Это просто. Необходимо вычислить значение функции при :

Полтора над уровнем моря.

Чтобы найти точки пересечения с осью (нули функции) требуется решить уравнение , и тут нас поджидает неприятный сюрприз:

В конце притаился свободный член, который существенно затрудняет задачу.

Такое уравнение имеет, как минимум, один действительный корень, и чаще всего этот корень иррационален. В худшей же сказке нас поджидают три поросёнка. Уравнение разрешимо с помощью так называемых формул Кардано , но порча бумаги сопоставима чуть ли не со всем исследованием. В этой связи разумнее устно либо на черновике попытаться подобрать хотя бы один целый корень. Проверим, не являются ли оными числа :
– не подходит;
– есть!

Здесь повезло. В случае неудачи можно протестировать ещё и , а если и эти числа не подошли, то шансов на выгодное решение уравнения, боюсь, очень мало. Тогда пункт исследования лучше полностью пропустить – авось станет что-нибудь понятнее на завершающем шаге, когда будут пробиваться дополнительные точки. И если таки корень (корни) явно «нехорошие», то об интервалах знакопостоянства лучше вообще скромно умолчать да поаккуратнее выполнить чертёж.

Однако у нас есть красивый корень , поэтому делим многочлен на без остатка:

Алгоритм деления многочлена на многочлен детально разобран в первом примере урока Сложные пределы .

В итоге левая часть исходного уравнения раскладывается в произведение:

А теперь немного о здоровом образе жизни. Я, конечно же, понимаю, что квадратные уравнения нужно решать каждый день, но сегодня сделаем исключение: уравнение имеет два действительных корня .

На числовой прямой отложим найденные значения и методом интервалов определим знаки функции:


Таким образом, на интервалах график расположен
ниже оси абсцисс , а на интервалах – выше данной оси .

Полученные выводы позволяют детализировать наш макет, и второе приближение графика выглядит следующим образом:

Обратите внимание, что на интервале функция обязательно должна иметь хотя бы один максимум, а на интервале – хотя бы один минимум. Но сколько раз, где и когда будет «петлять» график, мы пока не знаем. К слову, функция может иметь и бесконечно много экстремумов .

4) Возрастание, убывание и экстремумы функции.

Найдём критические точки:

Данное уравнение имеет два действительных корня . Отложим их на числовой прямой и определим знаки производной:


Следовательно, функция возрастает на и убывает на .
В точке функция достигает максимума: .
В точке функция достигает минимума: .

Установленные факты загоняют наш шаблон в довольно жёсткие рамки:

Что и говорить, дифференциальное исчисление – штука мощная. Давайте окончательно разберёмся с формой графика:

5) Выпуклость, вогнутость и точки перегиба.

Найдём критические точки второй производной:

Определим знаки :


График функции является выпуклым на и вогнутым на . Вычислим ординату точки перегиба: .

Практически всё прояснилось.

6) Осталось найти дополнительные точки, которые помогут точнее построить график и выполнить самопроверку. В данном случае их мало, но пренебрегать не будем:

Выполним чертёж:

Зелёным цветом отмечена точка перегиба, крестиками – дополнительные точки. График кубической функции симметричен относительно своей точки перегиба, которая всегда расположена строго посередине между максимумом и минимумом.

По ходу выполнения задания я привёл три гипотетических промежуточных чертежа. На практике же достаточно нарисовать систему координат, отмечать найденные точки и после каждого пункта исследования мысленно прикидывать, как может выглядеть график функции. Студентам с хорошим уровнем подготовки не составит труда провести такой анализ исключительно в уме без привлечения черновика.

Для самостоятельного решения:

Пример 2

Исследовать функцию и построить график.

Тут всё быстрее и веселее, примерный образец чистового оформления в конце урока.

Немало секретов раскрывает исследование дробно-рациональных функций:

Пример 3

Методами дифференциального исчисления исследовать функцию и на основании результатов исследования построить её график.

Решение : первый этап исследования не отличается чем-то примечательным, за исключением дырки в области определения:

1) Функция определена и непрерывна на всей числовой прямой кроме точки , область определения : .


, значит, данная функция не является четной или нечетной.

Очевидно, что функция непериодическая.

График функции представляет собой две непрерывные ветви, расположенные в левой и правой полуплоскости – это, пожалуй, самый важный вывод 1-го пункта.

2) Асимптоты, поведение функции на бесконечности.

а) С помощью односторонних пределов исследуем поведение функции вблизи подозрительной точки, где явно должна быть вертикальная асимптота:

Действительно, функции терпит бесконечный разрыв в точке ,
а прямая (ось ) является вертикальной асимптотой графика .

б) Проверим, существуют ли наклонные асимптоты:

Да, прямая является наклонной асимптотой графика , если .

Пределы анализировать смысла не имеет, поскольку и так понятно, что функция в обнимку со своей наклонной асимптотой не ограничена сверху и не ограничена снизу .

Второй пункт исследования принёс много важной информации о функции. Выполним черновой набросок:

Вывод №1 касается интервалов знакопостоянства. На «минус бесконечности» график функции однозначно расположен ниже оси абсцисс, а на «плюс бесконечности» – выше данной оси. Кроме того, односторонние пределы сообщили нам, что и слева и справа от точки функция тоже больше нуля. Обратите внимание, что в левой полуплоскости график, по меньшей мере, один раз обязан пересечь ось абсцисс. В правой полуплоскости нулей функции может и не быть.

Вывод №2 состоит в том, что функция возрастает на и слева от точки (идёт «снизу вверх»). Справа же от данной точки – функция убывает (идёт «сверху вниз»). У правой ветви графика непременно должен быть хотя бы один минимум. Слева экстремумы не гарантированы.

Вывод №3 даёт достоверную информацию о вогнутости графика в окрестности точки . О выпуклости/вогнутости на бесконечностях мы пока ничего сказать не можем, поскольку линия может прижиматься к своей асимптоте как сверху, так и снизу. Вообще говоря, есть аналитический способ выяснить это прямо сейчас, но форма графика «даром» прояснится на более поздних этапах.

Зачем столько слов? Чтобы контролировать последующие пункты исследования и не допустить ошибок! Дальнейшие выкладки не должны противоречить сделанным выводам.

3) Точки пересечения графика с координатными осями, интервалы знакопостоянства функции.

График функции не пересекает ось .

Методом интервалов определим знаки :

, если ;
, если .

Результаты пункта полностью соответствуют Выводу №1. После каждого этапа смотрите на черновик, мысленно сверяйтесь с исследованием и дорисовывайте график функции.

В рассматриваемом примере числитель почленно делится на знаменатель, что очень выгодно для дифференцирования:

Собственно, это уже проделывалось при нахождении асимптот.

– критическая точка.

Определим знаки :

возрастает на и убывает на

В точке функция достигает минимума: .

Разночтений с Выводом №2 также не обнаружилось, и, вероятнее всего, мы на правильном пути.

Значит, график функции является вогнутым на всей области определения.

Отлично – и чертить ничего не надо.

Точки перегиба отсутствуют.

Вогнутость согласуется с Выводом №3, более того, указывает, что на бесконечности (и там и там) график функции расположен выше своей наклонной асимптоты.

6) Добросовестно приколотим задание дополнительными точками. Вот здесь придётся изрядно потрудиться, поскольку из исследования нам известны только две точки.

И картинка, которую, наверное, многие давно представили:


В ходе выполнения задания нужно тщательно следить за тем, чтобы не возникало противоречий между этапами исследования, но иногда ситуация бывает экстренной или даже отчаянно-тупиковой. Вот «не сходится» аналитика – и всё тут. В этом случае рекомендую аварийный приём: находим как можно больше точек, принадлежащих графику (сколько хватит терпения), и отмечаем их на координатной плоскости. Графический анализ найденных значений в большинстве случаев подскажет, где правда, а где ложь. Кроме того, график можно предварительно построить с помощью какой-нибудь программы, например, в том же Экселе (понятно, для этого нужны навыки).

Пример 4

Методами дифференциального исчисления исследовать функцию и построить её график.

Это пример для самостоятельного решения. В нём самоконтроль усиливается чётностью функции – график симметричен относительно оси , и если в вашем исследовании что-то противоречит данному факту, ищите ошибку.

Чётную или нечётную функцию можно исследовать только при , а потом пользоваться симметрией графика. Такое решение оптимально, однако выглядит, по моему мнению, весьма непривычно. Лично я рассматриваю всю числовую ось, но дополнительные точки нахожу всё же лишь справа:

Пример 5

Провести полное исследование функции и построить её график.

Решение : понеслась нелёгкая:

1) Функция определена и непрерывна на всей числовой прямой: .

Значит, данная функция является нечетной, её график симметричен относительно начала координат.

Очевидно, что функция непериодическая.

2) Асимптоты, поведение функции на бесконечности.

Так как функция непрерывна на , то вертикальные асимптоты отсутствуют

Для функции, содержащей экспоненту, типично раздельное исследование «плюс» и «минус бесконечности», однако нашу жизнь облегчает как раз симметрия графика – либо и слева и справа есть асимптота, либо её нет. Поэтому оба бесконечных предела можно оформить под единой записью. В ходе решения используем правило Лопиталя :

Прямая (ось ) является горизонтальной асимптотой графика при .

Обратите внимание, как я хитро избежал полного алгоритма нахождения наклонной асимптоты: предел вполне легален и проясняет поведение функции на бесконечности, а горизонтальная асимптота обнаружилась «как бы заодно».

Из непрерывности на и существования горизонтальной асимптоты следует тот факт, что функция ограничена сверху и ограничена снизу .

3) Точки пересечения графика с координатными осями, интервалы знакопостоянства.

Здесь тоже сокращаем решение:
График проходит через начало координат.

Других точек пересечения с координатными осями нет. Более того, интервалы знакопостоянства очевидны, и ось можно не чертить: , а значит, знак функции зависит только от «икса»:
, если ;
, если .

4) Возрастание, убывание, экстремумы функции.


– критические точки.

Точки симметричны относительно нуля, как оно и должно быть.

Определим знаки производной:


Функция возрастает на интервале и убывает на интервалах

В точке функция достигает максимума: .

В силу свойства (нечётности функции) минимум можно не вычислять:

Поскольку функция убывает на интервале , то, очевидно, на «минус бесконечности» график расположен под своей асимптотой. На интервале функция тоже убывает, но здесь всё наоборот – после перехода через точку максимума линия приближается к оси уже сверху.

Из вышесказанного также следует, что график функции является выпуклым на «минус бесконечности» и вогнутым на «плюс бесконечности».

После этого пункта исследования прорисовалась и область значений функции:

Если у вас возникло недопонимание каких-либо моментов, ещё раз призываю начертить в тетради координатные оси и с карандашом в руках заново проанализировать каждый вывод задания.

5) Выпуклость, вогнутость, перегибы графика.

– критические точки.

Симметрия точек сохраняется, и, скорее всего, мы не ошибаемся.

Определим знаки :


График функции является выпуклым на и вогнутым на .

Выпуклость/вогнутость на крайних интервалах подтвердилась.

Во всех критических точках существуют перегибы графика. Найдём ординаты точек перегиба, при этом снова сократим количество вычислений, используя нечётность функции:

Сегодня мы предлагаем вместе с нами исследовать и построить график функции. После внимательного изучения данной статьи вам не придется долго потеть над выполнением подобного рода задания. Исследовать и построить график функции нелегко, работа объемная, требующая максимального внимания и точности вычислений. Для облегчения восприятия материала мы будем поэтапно изучать одну и ту же функцию, объясним все наши действия и вычисления. Добро пожаловать в удивительный и увлекательный мир математики! Поехали!

Область определения

Для того чтобы исследовать и построить график функции, необходимо знать несколько определений. Функция является одним из основных (базовых) понятий в математике. Она отражает зависимость между несколькими переменными (двумя, тремя и более) при изменениях. Так же функция показывает зависимость множеств.

Представьте, что у нас есть две переменные, которые имеют определенный диапазон изменения. Так вот, у - это функция от х, при условии, что каждому значению второй переменной соответствует одно значение второй. При этом переменная у - зависима, ее и называют функцией. Принято говорить, что переменные х и у находятся в Для большей наглядности данной зависимости строят график функции. Что такое график функции? Это множество точек на координатной плоскости, где каждому значению х соответствует одно значение у. Графики могут быть разные - прямая линия, гипербола, парабола, синусоида и так далее.

График функции невозможно построить без исследования. Сегодня мы научимся проводить исследование и построим график функции. Очень важно в ходе исследования на наносить пометки. Так справиться с задачей будет намного проще. Наиболее удобный план исследования:

  1. Область определения.
  2. Непрерывность.
  3. Четность или нечетность.
  4. Периодичность.
  5. Асимптоты.
  6. Нули.
  7. Знакопостоянство.
  8. Возрастание и убывание.
  9. Экстремумы.
  10. Выпуклость и вогнутость.

Начнем с первого пункта. Найдем область определения, то есть на каких промежутках существует наша функция: у=1/3(х^3-14х^2+49х-36). В нашем случае, функция существует при любых значениях х, то есть область определения равна R. Записать это можно следующим образом хÎR.

Непрерывность

Сейчас мы с вами будем исследовать функцию на разрыв. В математике термин «непрерывность» появился в результате изучения законов движения. Что является бесконечным? Пространство, время, некоторые зависимости (примером может служить зависимость переменных S и t в задачах на движение), температура нагреваемого объекта (воды, сковороды, термометра и так далее), непрерывная линия (то есть та, которую можно нарисовать, не отрывая от листа карандаш).

Непрерывным считается график, который не разрывается в некоторой точке. Одним из самых наглядных примеров такого графика является синусоида, которую вы можете увидеть на картинке в данном разделе. Функция непрерывна в некоторой точке х0, если соблюден ряд условий:

  • в данной точке определена функция;
  • правый и левый предел в точке равны;
  • предел равен значению функции в точке х0.

При несоблюдении хотя бы одного условия говорят, что функция терпит разрыв. А точки, в которых разрывается функция, принято называть точками разрыва. Примером функции, которая при графическом отображении будет «разрываться», может служить: у=(х+4)/(х-3). При этом у не существует в точке х=3 (так как на нуль делить нельзя).

В функции, которую исследуем мы (у=1/3(х^3-14х^2+49х-36)) оказалось все просто, так как график будет являться непрерывным.

Четность, нечетность

Теперь исследуйте функцию на четность. Для начала немного теории. Четной называют ту функцию, которая удовлетворяет условию f(-x)=f(x) при любом значении переменной х (из области значений). Примерами могут служить:

  • модуль х (график похож на галку, биссектриса первой и второй четверти графика);
  • х в квадрате (парабола);
  • косинус х (косинусоида).

Обратите внимание на то, что все эти графики симметричны, если рассматривать это относительно оси ординат (то есть у).

А что же тогда называют нечетной функцией? Таковыми являются те функции, которые удовлетворяют условию: f(-х)=-f(х) при любом значении переменной х. Примеры:

  • гипербола;
  • кубическая парабола;
  • синусоида;
  • тангенсоида и так далее.

Обратите внимание на то, что данные функции имеют симметрию относительно точки (0:0), то есть начала координат. Исходя из того, что было сказано в данном разделе статьи, четная и нечетная функция должна обладать свойством: х принадлежит множеству определения и -х тоже.

Исследуем функцию на четность. Мы можем заметить, что она не подходит ни под одно из описаний. Следовательно, наша функция не является ни четной, ни нечетной.

Асимптоты

Начнем с определения. Асимптота - это кривая, которая максимально приближена к графику, то есть расстояние от некоторой точки стремится к нулю. Всего выделяют три вида асимптот:

  • вертикальные, то есть параллельные оси у;
  • горизонтальные, то есть параллельные оси х;
  • наклонные.

Что касается первого вида, то данные прямые стоит искать в некоторых точках:

  • разрыв;
  • концы области определения.

В нашем случае функция непрерывна, а область определения равна R. Следовательно, вертикальные асимптоты отсутствуют.

Горизонтальная асимптота есть у графика функции, который отвечает следующему требованию: если х стремится к бесконечности или минус бесконечности, а предел равен некоторому числу (например, а). В данном случае у=а - это и есть горизонтальная асимптота. В исследуемой нами функции горизонтальных асимптот нет.

Наклонная асимптота существует только в том случае, если соблюдены два условия:

  • lim (f(x))/x=k;
  • lim f(x)-kx=b.

Тогда ее можно найти по формуле: у=kx+b. Опять же, в нашем случае наклонных асимптот нет.

Нули функции

Следующим этапом нам необходимо исследовать график функции на нули. Очень важно отметить и то, что задание, связанное с нахождением нулей функции, встречается не только при исследовании и построении графика функции, но и как самостоятельное задание, и как способ решения неравенств. От вас могут потребовать найти нули функции на графике или использовать математическую запись.

Нахождение данных значений поможет вам более точно составить график функции. Если говорить простым языком, то нуль функции - это значение переменной х, при которой у=0. Если вы ищите нули функции на графике, то стоит обратить внимание на точки, в которых происходит пересечение графика с осью абсцисс.

Чтобы найти нули функции, необходимо решить следующее уравнение: у=1/3(х^3-14х^2+49х-36)=0. После проведения необходимых вычислений, мы получаем следующий ответ:

Знакопостоянство

Следующий этап исследования и построения функции (графика) - это нахождение промежутков знакопостоянства. Это значит, что мы должны определить, на каких промежутках функция принимает положительное значение, а на каких - отрицательное. Это нам помогут сделать найденные в прошлом разделе нули функции. Итак, нам нужно построить прямую (отдельно от графика) и в правильном порядке распределить по ней нули функции от меньшего к большему. Теперь нужно определить, какой из полученных промежутков имеет знак «+», а какой «-».

В нашем случае, функция принимает положительное значение на промежутках:

  • от 1 до 4;
  • от 9 до бесконечности.

Отрицательное значение:

  • от минус бесконечности до 1;
  • от 4 до 9.

Это определить достаточно просто. Подставьте любое число из промежутка в функцию и посмотрите с каким знаком получился ответ (минус или плюс).

Возрастание и убывание функции

Для того чтобы исследовать и построить функцию, нам необходимо узнать, где график будет возрастать (идти вверх по Оу), а где будет падать (ползти вниз по оси ординат).

Функция возрастает только в том случае, если большему значению переменной х соответствует большее значение у. То есть х2 больше х1, а f(х2) больше f(x1). И совершенно обратное явление мы наблюдаем у убывающей функции (чем больше х, тем меньше у). Для определения промежутков возрастания и убывания необходимо найти следующее:

  • область определения (у нас уже есть);
  • производную (в нашем случае: 1/3(3х^2-28х+49);
  • решить уравнение 1/3(3х^2-28х+49)=0.

После вычислений мы получаем результат:

Получаем: функция возрастает на промежутках от минуса бесконечности до 7/3 и от 7 до бесконечности, а убывает на промежутке от 7/3 до 7.

Экстремумы

Исследуемая функция y=1/3(х^3-14х^2+49х-36) является непрерывной и существует при любых значениях переменной х. Точка экстремума показывает максимум и минимум данной функции. В нашем случае таковых не имеется, что значительно упрощает задачу построения. В противном случае так же находятся при помощи производной функции. После нахождения не забывайте отмечать их на графике.

Выпуклость и вогнутость

Продолжаем далее исследовать функцию y(x). Сейчас нам нужно проверить ее на выпуклость и вогнутость. Определения этих понятий достаточно тяжело воспринять, лучше все проанализировать на примерах. Для теста: функция выпуклая, если является неубывающей функции. Согласитесь, это непонятно!

Нам нужно найти производную от функции второго порядка. Мы получаем: у=1/3(6х-28). Теперь приравняем правую часть к нулю и решим уравнение. Ответ: х=14/3. Мы нашли точку перегиба, то есть место, где график меняет выпуклость на вогнутость или наоборот. На промежутке от минус бесконечности до 14/3 функция выпукла, а от 14/3 до плюс бесконечности - вогнута. Очень важно отметить и то, что точка перегиба на графике должна быть плавной и мягкой, никаких острых углов присутствовать не должно.

Определение дополнительных точек

Наша задача - исследовать и построить график функции. Мы закончили исследование, построить график функции теперь не составит труда. Для более точного и детального воспроизведения кривой или прямой на координатной плоскости можно найти несколько вспомогательных точек. Их вычислить довольно просто. Например, мы возьмем х=3, решаем полученное уравнение и находим у=4. Или х=5, а у=-5 и так далее. Дополнительных точек вы можете брать столько, сколько вам необходимо для построения. Минимум их находят 3-5.

Построение графика

Нам необходимо было исследовать функцию (x^3-14х^2+49х-36)*1/3=у. Все необходимые пометки в ходе вычислений были нанесены на координатной плоскости. Все что осталось сделать - построить график, то есть соединить все точки между собой. Соединять точки стоит плавно и аккуратно, это дело мастерства - немного практики и ваш график будет идеальным.