Логарифмические неравенства теория. Логарифмические уравнения и неравенства. Основное логарифмическое тождество

Логарифмическим уравнениям и неравенствам в вариантах ЕГЭ по математике посвящена задача C3 . Научиться решать задания C3 из ЕГЭ по математике должен каждый ученик, если он хочет сдать предстоящий экзамен на «хорошо» или «отлично». В данной статье представлен краткий обзор часто встречающихся логарифмических уравнений и неравенств, а также основных методов их решения.

Итак, разберем сегодня несколько примеров логарифмических уравнений и неравенств , которые предлагались учащимся в вариантах ЕГЭ по математике прошлых лет. Но начнет с краткого изложение основных теоретических моментов, которые нам понадобятся для их решения.

Логарифмическая функция

Определение

Функцию вида

0,\, a\ne 1 \]" title="Rendered by QuickLaTeX.com">

называют логарифмической функцией .

Основные свойства

Основные свойства логарифмической функции y = log a x :

Графиком логарифмической функции является логарифмическая кривая :


Свойства логарифмов

Логарифм произведения двух положительных чисел равен сумме логарифмов этих чисел:

Title="Rendered by QuickLaTeX.com">

Логарифм частного двух положительных чисел равен разности логарифмов этих чисел:

Title="Rendered by QuickLaTeX.com">

Если a и b a ≠ 1, то для любого числа r справедливо равенство :

Title="Rendered by QuickLaTeX.com">

Равенство log a t = log a s , где a > 0, a ≠ 1, t > 0, s > 0, справедливо тогда и только тогда, когда t = s.

Если a , b , c — положительные числа, причем a и c отличны от единицы, то имеет место равенство (формула перехода к новому основанию логарифма ):

Title="Rendered by QuickLaTeX.com">

Теорема 1. Если f (x ) > 0 и g (x ) > 0, то логарифмическое уравнение log a f (x ) = log a g (x ) (где a > 0, a ≠ 1) равносильно уравнению f (x ) = g (x ).

Решение логарифмических уравнений и неравенств

Пример 1. Решите уравнение:

Решение. В область допустимых значений входят только те x , при которых выражение, находящееся под знаком логарифма, больше нуля. Эти значения определяются следующей системой неравенств:

Title="Rendered by QuickLaTeX.com">

С учетом того, что

Title="Rendered by QuickLaTeX.com">

получаем промежуток, определяющий область допустимых значений данного логарифмического уравнения:

На основании теоремы 1, все условия которой здесь выполнены, переходим к следующему равносильному квадратичному уравнению:

В область допустимых значений входит только первый корень.

Ответ: x = 7.

Пример 2. Решите уравнение:

Решение. Область допустимых значений уравнения определяется системой неравенств:

ql-right-eqno">

Решение. Область допустимых значений уравнения определяется здесь легко: x > 0.

Используем подстановку:

Уравнение принимает вид:

Обратная подстановка:

Оба ответа входят в область допустимых значений уравнения, поскольку являются положительными числами.

Пример 4. Решите уравнение:

Решение. Вновь начнем решение с определения области допустимых значений уравнения. Она определяется следующей системой неравенств:

ql-right-eqno">

Основания логарифмов одинаковы, поэтому в области допустимых значений можно перейти к следующему квадратному уравнению:

Первый корень не входит в область допустимых значений уравнения, второй — входит.

Ответ: x = -1.

Пример 5. Решите уравнение:

Решение. Будем искать решения в промежутке x > 0, x ≠1. Преобразуем уравнение к равносильному:

Оба ответа входят в область допустимых значений уравнения.

Пример 6. Решите уравнение:

Решение. Система неравенств, определяющая область допустимых значений уравнения, имеет на этот раз вид:

Title="Rendered by QuickLaTeX.com">

Используя свойства логарифма, преобразуем уравнение к равносильному в области допустимых значений уравнению:

Используя формулу перехода к новому основанию логарифма, получаем:

В область допустимых значений входит только один ответ: x = 4.

Перейдем теперь к логарифмическим неравенствам . Это как раз то, с чем вам придется иметь дело на ЕГЭ по математике. Для решения дальнейших примеров нам потребуется следующая теорема:

Теорема 2. Если f (x ) > 0 и g (x ) > 0, то:
при a > 1 логарифмическое неравенство log a f (x ) > log a g (x ) равносильно неравенству того же смысла: f (x ) > g (x );
при 0 < a < 1 логарифмическое неравенство log a f (x ) > log a g (x ) равносильно неравенству противоположного смысла: f (x ) < g (x ).

Пример 7. Решите неравенство:

Решение. Начнем с определения области допустимых значений неравенства. Выражение, стоящее под знаком логарифмической функции, должно принимать только положительные значения. Это значит, что искомая область допустимых значений определяется следующей системой неравенств:

Title="Rendered by QuickLaTeX.com">

Так как в основании логарифма стоит число, меньшее единицы, соответствующая логарифмическая функция будет убывающей, а потому равносильным по теореме 2 будет переход к следующему квадратичному неравенству:

Окончательно, с учетом области допустимых значений получаем ответ:

Пример 8. Решите неравенство:

Решение. Вновь начнем с определения области допустимых значений:

Title="Rendered by QuickLaTeX.com">

На множестве допустимых значений неравенства проводим равносильные преобразования:

После сокращения и перехода к равносильному по теореме 2 неравенству получаем:

С учетом области допустимых значений получаем окончательный ответ:

Пример 9. Решите логарифмическое неравенство:

Решение. Область допустимых значений неравенства определяется следующей системой:

Title="Rendered by QuickLaTeX.com">

Видно, что в области допустимых значений выражение, стоящее в основании логарифма, всегда больше единицы, а потому равносильным по теореме 2 будет переход к следующему неравенству:

С учетом области допустимых значений получаем окончательный ответ:

Пример 10. Решите неравенство:

Решение.

Область допустимых значений неравенства определяется системой неравенств:

Title="Rendered by QuickLaTeX.com">

I способ. Воспользуемся формулой перехода к новому основанию логарифма и перейдем к равносильному в области допустимых значений неравенству.

Решение неравенств онлайн

Перед тем как решать неравенства, необходимо хорошо усвоить как решаются уравнения .

Не важно каким является неравенство – строгим () или нестрогим (≤, ≥), первым делом приступают к решению уравнения, заменив знак неравенства на равенство (=).

Поясним что означает решить неравенство?

После изучения уравнений в голове у школьника складывается следующая картина: нужно найти такие значения переменной, при которых обе части уравнения принимают одинаковые значения. Другими словами, найти все точки, в которых выполняется равенство. Всё правильно!

Когда говорят о неравенствах, имеют в виду нахождение интервалов (отрезков), на которых выполняется неравенство. Если в неравенстве две переменные, то решением будут уже не интервалы, а какие-то площади на плоскости. Догадайтесь сами, что будет решением неравенства от трех переменных?

Как решать неравенства?

Универсальным способом решения неравенств считают метод интервалов (он же метод промежутков), который заключается в определении всех интервалов, в границах которых будет выполняться заданное неравенство.

Не вдаваясь в тип неравенства, в данном случае это не суть, требуется решить соответствующее уравнение и определить его корни с последующим обозначением этих решений на числовой оси.

Как правильно записывать решение неравенства?

Когда вы определили интервалы решений неравенства, нужно грамотно выписать само решение. Есть важный нюанс – входят ли границы интервалов в решение?

Тут всё просто. Если решение уравнения удовлетворяет ОДЗ и неравенство является нестрогим, то граница интервала входит в решение неравенства. В противном случае – нет.

Рассматривая каждый интервал, решением неравенства может оказаться сам интервал, либо полуинтервал (когда одна из его границ удовлетворяет неравенству), либо отрезок – интервал вместе с его границами.

Важный момент

Не думайте, что решением неравенства могут быть только интервалы, полуинтервалы и отрезки. Нет, в решение могут входить и отдельно взятые точки.

Например, у неравенства |x|≤0 всего одно решение – это точка 0.

А у неравенства |x|

Для чего нужен калькулятор неравенств?

Калькулятор неравенств выдает правильный итоговый ответ. При этом в большинстве случаев приводится иллюстрация числовой оси или плоскости. Видно, входят ли границы интервалов в решение или нет – точки отображаются закрашенными или проколотыми.

Благодаря онлайн калькулятору неравенств можно проверить правильно ли вы нашли корни уравнения, отметили их на числовой оси и проверили на интервалах (и границах) выполнение условия неравенства?

Если ваш ответ расходится с ответом калькулятора, то однозначно нужно перепроверить свое решение и выявить допущенную ошибку.

При изучении логарифмической функции мы рассматривали в основном неравенства вида
log а х < b и log а х ≥ b. Рассмотрим решение более сложных логарифмических неравенств. Обычным способом решения таких неравенств является переход от данного неравенства к более простому неравенству или системе неравенств, которая имеет то же самое множество решений.

Решить неравенство lg (х + 1) ≤ 2 (1).

Решение .

1) Правая часть рассматриваемого неравенства смысл имеет при всех значенияхх, а левая часть – при х + 1 > 0, т.е. при х > -1.

2) Промежуток х > -1 называют областью определения неравенства (1). Логарифмическая функция с основанием 10 является возрастающей, следовательно, при условии х + 1 > 0 неравенство (1) выполняется, если х + 1 ≤ 100 (так как 2 = lg 100). Таким образом, неравенство (1) и система неравенств

{х > -1, (2)
{х + 1 ≤ 100,

равносильны, иными словами, множество решений неравенства (1) и системы неравенств (2) одно и то же.

3) Решая систему (2), находим -1 < х ≤ 99.

Ответ. -1 < х ≤ 99.

Решить неравенство log 2 (х – 3) + log 2 (х – 2) ≤ 1 (3).

Решение.

1) Областью определения рассматриваемой логарифмической функции является множество положительных значений аргумента, поэтому левая часть неравенства смысл имеет при х – 3 > 0 и х – 2 > 0.

Следовательно, областью определения этого неравенства является промежуток х > 3.

2) По свойствам логарифма неравенство (3) при х > 3 равносильно неравенству log 2 (х – 3)(х – 2) ≤ log 2 (4).

3) Логарифмическая функция с основанием 2 является возрастающей. Поэтому при х > 3 неравенство (4) выполняется, если (х – 3)(х – 2) ≤ 2.

4) Таким образом, исходное неравенство (3) равносильно системе неравенств

{(х – 3)(х – 2) ≤ 2,
{х > 3.

Решая первое неравенство этой системы, получаем х 2 – 5х + 4 ≤ 0, откуда 1 ≤ х ≤ 4. Совмещая этот отрезок с промежутком х > 3, получаем 3 < х ≤ 4.

Ответ. 3 < х ≤ 4.

Решить неравенство log 1/2 (х 2 + 2х – 8) ≥ -4. (5)

Решение.

1) Область определения неравенства находим из условия х 2 + 2х – 8 > 0.

2) Неравенство (5) можно записать в виде:

log 1/2 (х 2 + 2х – 8) ≥ log 1/2 16.

3) Так как логарифмическая функция с основанием ½ убывающая, то для всех х из всей области определения неравенства получаем:

х 2 + 2х – 8 ≤ 16.

Таким образом, исходное равенство (5) равносильно системе неравенств

{х 2 + 2х – 8 > 0, или {х 2 + 2х – 8 > 0,
{х 2 + 2х – 8 ≤ 16, {х 2 + 2х – 24 ≤ 0.

Решая первое квадратное неравенство, получаем х < -4, х > 2. Решая второе квадратное неравенство, получаем -6 ≤ х ≤ 4. Следовательно, оба неравенства системы выполняются одновременно при -6 ≤ х < -4 и при 2 < х ≤ 4.

Ответ. -6 ≤ х < -4; 2 < х ≤ 4.

сайт, при полном или частичном копировании материала ссылка на первоисточник обязательна.

Логарифмические неравенства

На предыдущих уроках мы с вами познакомились с логарифмическими уравнениями и теперь знаем, что это такое и как их решать. А сегодняшний урок будет посвящен изучению логарифмических неравенств. Что же это за такие неравенства и в чем разница между решением логарифмического уравнения и неравенства?

Логарифмические неравенства - это неравенства, которые имеют переменную, стоящую под знаком логарифма или в его основании.

Или же, можно еще сказать, что логарифмическое неравенство – это такое неравенство, в котором его неизвестная величина, как и в логарифмическом уравнении, будет стоять под знаком логарифма.

Простейшие логарифмические неравенства имеют такой вид:

где f(x) и g(x) являются некоторыми выражениями, которые зависят от x.

Давайте это рассмотрим на таком примере: f(x)=1+2x+x2, g(x)=3x−1.

Решение логарифмических неравенств

Перед решением логарифмических неравенств, стоит отметить, что они при решении имеют сходство с показательными неравенствами, а именно:

Во-первых, при переходе от логарифмов к выражениям, стоящим под знаком логарифма, нам также необходимо сравнить основание логарифма с единицей;

Во-вторых, решая логарифмическое неравенство, используя замену переменных, нам необходимо решать неравенства относительно замены до того момента, пока мы не получим простейшее неравенство.

Но это мы с вами рассмотрели сходные моменты решения логарифмических неравенств. А сейчас обратим внимание на довольно таки существенное отличие. Нам с вами известно, что логарифмическая функция обладает ограниченной областью определения, поэтому переходя от логарифмов к выражениям, стоящим под знаком логарифма, нужно брать в расчет область допустимых значений (ОДЗ).

То есть, следует учитывать, что решая логарифмическое уравнение мы с вами, можем сначала находить корни уравнения, а потом делать проверку этого решения. А вот решить логарифмическое неравенство так не получится, поскольку переходя от логарифмов к выражениям, стоящим под знаком логарифма, необходимо будет записывать ОДЗ неравенства.

Вдобавок стоит запомнить, что теория неравенств состоит из действительных чисел, которыми являются положительные и отрицательные числа, а также и число 0.

Например, когда число «а» является положительным, то необходимо использовать такую запись: a >0. В этом случае, как сумма, так и произведение таких этих чисел также будут положительными.

Основным принципом решения неравенства является его замена на более простое неравенство, но главное, чтобы оно было равносильно данному. Дальше, также мы получили неравенство и снова его заменили на то, которое имеет более простой вид и т.д.

Решая неравенства с переменной нужно находить все его решения. Если два неравенства имеют одну переменную х, то такие неравенства равносильны, при условии, что их решения совпадают.

Выполняя задания на решение логарифмических неравенств, необходимо запомнить, что когда a > 1, то логарифмическая функция возрастает, а когда 0 < a < 1, то такая функция имеет свойство убывать. Эти свойства вам будут необходимы при решении логарифмических неравенств, поэтому вы их должны хорошо знать и помнить.

Способы решения логарифмических неравенств

Сейчас рассмотрим некоторые способы, которые имеют место при решении логарифмических неравенств. Для лучшего понимания и усвоения, попытаемся в них разобраться на конкретных примерах.

Нам с вами известно, что простейшее логарифмическое неравенство имеет такой вид:

В этом неравенстве V – является одним из таких знаков неравенства, как: <,>, ≤ или ≥.

Когда основание данного логарифма больше единицы (a>1), осуществляя переход от логарифмов к выражениям, стоящим под знаком логарифма, то в этом варианте знак неравенства сохраняется, и неравенство будет иметь такой вид:

что равносильно такой вот системе:


В случае же, когда основание логарифма больше нуля и меньше единицы (0

Это равносильно данной системе:


Посмотрим еще примеры решения простейших логарифмических неравенств, приведенных на картинке ниже:



Решение примеров

Задание. Давайте попробуем решить такое вот неравенство:


Решение области допустимых значений.


Теперь попробуем умножить его правую часть на:

Смотрим, что у нас получится:



Теперь, давайте с вами перейдем к преобразованию подлогарифмических выражений. В связи с тем, что основание логарифма 0< 1/4 <1, то от сюда следует, что знак неравенства изменится на противоположный:

3x - 8 > 16;
3x > 24;
х > 8.

А из этого следует, что интервал, который мы получили, целиком и полностью принадлежит ОДЗ и является решением такого неравенства.

Вот какой ответ у нас получился:


Что необходимо для решения логарифмических неравенств?

А теперь давайте попробуем проанализировать, что нам необходимо для успешного решения логарифмических неравенств?

Во-первых, сосредоточить все свое внимание и постараться не допускать ошибок при выполнении преобразований, которые даны в этом неравенстве. Также, следует запомнить, что при решении таких неравенств нужно не допускать расширений и сужений ОДЗ неравенства, которые могут привести к потере или приобретению посторонних решений.

Во-вторых, при решении логарифмических неравенств необходимо научиться мыслить логически и понимать разницу между такими понятиями, как система неравенств и совокупность неравенств, чтобы вы без проблем смогли осуществлять отбор решений неравенства, при этом руководствуясь его ОДЗ.

В-третьих, для успешного решения таких неравенств каждый из вас должен отлично знать все свойства элементарных функций и четко понимать их смысл. К таким функциям относятся не только логарифмические, но и рациональные, степенные, тригонометрические и т.д., одним словом, все те, которые вы изучали на протяжении школьного обучения алгебры.

Как видите, изучив тему о логарифмических неравенствах, в решении этих неравенств нет ничего сложного при условии, если вы будете внимательны и настойчивы в достижении поставленных целей. Чтобы в решении неравенств не возникало никаких проблем, нужно как можно больше тренироваться, решая различные задания и при этом запоминать основные способы решения таких неравенств и их систем. При неудачных решениях логарифмических неравенств, следует внимательно проанализировать свои ошибки, чтобы в будущем не возвращаться к ним снова.

Домашнее задание

Для лучшего усвоения темы и закрепления пройденного материала, решите следующие неравенства:


решение неравенства в режиме онлайн решение почти любого заданного неравенства онлайн . Математические неравенства онлайн для решения математики. Быстро найти решение неравенства в режиме онлайн . Сайт www.сайт позволяет найти решение почти любого заданного алгебраического , тригонометрического или трансцендентного неравенства онлайн . При изучении практически любого раздела математики на разных этапах приходится решать неравенства онлайн . Чтобы получить ответ сразу, а главное точный ответ, необходим ресурс, позволяющий это сделать. Благодаря сайту www.сайт решение неравенства онлайн займет несколько минут. Основное преимущество www.сайт при решении математических неравенства онлайн - это скорость и точность выдаваемого ответа. Сайт способен решать любые алгебраические неравенства онлайн , тригонометрические неравенства онлайн , трансцендентные неравенства онлайн , а также неравенства с неизвестными параметрами в режиме онлайн . Неравенства служат мощным математическим аппаратом решения практических задач. C помощью математических неравенств можно выразить факты и соотношения, которые могут показаться на первый взгляд запутанными и сложными. Неизвестные величины неравенств можно найти, сформулировав задачу на математическом языке в виде неравенств и решить полученную задачу в режиме онлайн на сайте www.сайт. Любое алгебраическое неравенство , тригонометрическое неравенство или неравенства содержащие трансцендентные функции Вы легко решите онлайн и получите точный ответ. Изучая естественные науки, неизбежно сталкиваешься с необходимостью решения неравенств . При этом ответ должен быть точным и получить его необходимо сразу в режиме онлайн . Поэтому для решения математических неравенств онлайн мы рекомендуем сайт www.сайт, который станет вашим незаменимым калькулятором для решения алгебраических неравенств онлайн , тригонометрических неравенств онлайн , а также трансцендентных неравенств онлайн или неравенств с неизвестными параметрами. Для практических задач по нахождению инетравол решений различных математических неравенств ресурса www.. Решая неравенства онлайн самостоятельно, полезно проверить полученный ответ, используя онлайн решение неравенств на сайте www.сайт. Необходимо правильно записать неравенство и моментально получите онлайн решение , после чего останется только сравнить ответ с Вашим решением неравенства. Проверка ответа займет не более минуты, достаточно решить неравенство онлайн и сравнить ответы. Это поможет Вам избежать ошибок в решении и вовремя скорректировать ответ при решении неравенств онлайн будь то алгебраическое , тригонометрическое , трансцендентное или неравенство с неизвестными параметрами.