Теорема о циркуляции вектора напряженности. Теорема о циркуляции вектора напряженности Что такое циркуляция вектора напряженности электрического поля

Работа по перемещению заряда в электростатическом поле не зависит от формы пути перехода, а зависит только от положения начальной и конечной точек перемещения, т.е. электростатическое поле точечного заряда является потенциальным, а электростатические силы консервативными. В случае, когда заряд q 0 перемещается в поле системы зарядов, то на движущийся заряд по принципу суперпозиций действует сила и работа равнодействующей силы равна алгебраической сумме работ соответствующих сил:

, (7.11)

где r i 1 и r i 2 расстояния от заряда q i до начальной и конечной точки перемещение заряда q 0 . Из формулы (7.10) также следует, что работа, совершаемая при перемещении заряда в электростатическом поле по замкнутому пути, равна нулю, т.е. . Если перемещённый заряд принять за единицу, то (7.11) можно записать:

, или . (7.12)

Этот интеграл называется циркуляцией вектора напряженности вдоль замкнутого контура .

Из теоремы о циркуляции вектора напряженности можно сделать несколько важных выводов: 1) линии напряженности поля не могут быть замкнутыми; 2) существование электростатического поля вида, показанного на рис. 7.5 невозможно.


Рис.7.5
Рис.7.4

В самом деле, если применить к этому полю теорему о циркуляции вектора по замкнутому контуру, показанному на рис. 7.6 пунктиром, то она была бы отлична от нуля, что противоречит теореме.

Вопрос №42

Потенциал электростатического поля. q 2 в поле заряда q 1 можно записать в виде

. (7.16)

Wp const r → ∞, Wp = 0 . Следовательно,

. (7.17)

W/q 2 q 2 .

q равен

Если поле создаётся системой зарядов q 1 , q 2 , …q n , то для потенциальной энергии заряда q пр в поле системы зарядов получим

. (7.21)

С учетом (7.19), потенциал поля системы зарядов равен алгебраической сумме потенциалов, создаваемых каждым из зарядов в отдельности

(7.22)

7.7 Связь между потенциалом j и напряжённостью электрического поля . Дифференциальную формулу связи и φ, справедливую для малой окрестности какой-либо точки поля, можно вывести из выражений для элементарной работы . Откуда

где E l – проекция вектора на направление в пространстве.

В более общем векторном виде вектор равен , где

– единичные векторы, направленные соответственно вдоль осей х, у, z Последнее уравнение можно записать в виде

Или Ñj , (7.19)

т.е. напряжённость поля равна градиенту потенциала и направлена в сторону убывания потенциала .

Вопрос №43

7.8 проводники в электрическом поле. Если проводнику сообщить некоторый заряд или его поместить во внешнее электростатическое поле, то в обоих случаях на заряды проводника будет действовать электростатическое поле и они будут перемещаться внутри проводника. Этот процесс будет происходить до тех пор, пока внутри проводника поле не будет равно нулю и потенциал внутри проводника должен быть постоянным (j=const). Напряженность на поверхности проводника в каждой точке должна быть направлена по нормали. В противном случае касательные составляющие привели бы заряды, находящиеся на поверхности в движение, и равновесие зарядов было бы нарушено. Применив теорему Гаусса, можно определить напряжённость поля непосредственно у поверхности проводника

,

где e – диэлектрическая проницаемость среды, окружающей проводник, s – поверхностная плотность заряда.

7.9 Электроемкость уединенного проводника. Рассмотрим проводник, удаленный от других проводников, тел и зарядов в связи с чем его можно рассматривать как уединенный проводник. Из опыта следует, что между зарядом и потенциалом существует зависимость q = Сj.

Величину называют электроемкостью или просто емкостью уединенного проводника . Емкость зависит от формы и размеров проводника и не зависит от материала, агрегатного состояния и от размеров полостей внутри проводника. Емкость не зависит от заряда и потенциала проводника.

7.10 Электроемкость конденсаторов. Система проводников, близко расположенных друг другу и заряженных одинаковыми по величине, но противоположными по знаку зарядами называется конденсатором, а проводники – его обкладками. Емкость конденсатора определяется

где j 1 - j 2 –разность потенциалов между обкладками, q – заряд, расположенный на положительно заряженной обкладке конденсатора. По форме обкладок конденсаторы бывают плоские, цилиндрические и сферические:

1) электроёмкость плоского конденсатора

2) электроёмкость цилиндрического конденсатора

, (7.23)

где – длина конденсатора, R 1 и R 2 – радиусы внутренней и наружной цилиндрических обкладок.

3) Электроемкость сферического конденсатора

, (7.24)

где R 1 и R 2 – радиусы внутренней и наружной обкладок.

Вопрос №44

7.11 Энергия заряженного конденсатора. Процесс зарядки конденсатора можно представить как последовательное перемещение бесконечно малых порций заряда dq с одной пластины на другую, в результате чего одна из пластин будет заряжаться положительно, а другая – отрицательно и между ними будет возникать постепенно возрастающая разность потенциалов U = q / С . При этом энергия конденсатора равна

Здесь Е – напряженность электрического поля внутри конденсатора, a V= S d –его объем. Отсюда энергия единицы объема, или объемная плотность энергии электрического поля

В изотропном диэлектрике направления векторов и совпадают. Поэтому формуле для плотности энергии можно придать вид

Первое слагаемое в этом выражении совпадает с плотностью энергии поля в вакууме. Второе слагаемое представляет собой энергию, затрачиваемую на поляризацию диэлектрика.

7.6 Потенциал электростатического поля. Поскольку работа консервативных сил равна убыли потенциальной энергии, то на основании формулы (7.13) выражение для потенциальной энергии заряда q 2 в поле заряда q 1 можно записать в виде

. (7.16)

Как видно из выражения (7.16), Wp определяется с точностью до постоянной величины. В данном случае для электрического поля точечного заряда принято выбирать const так, чтобы на бесконечно большом расстоянии между зарядами их взаимная потенциальная энергия обращалась в нуль: r → ∞, Wp = 0 . Следовательно,

.

Из формулы (7.17) следует, что отношение W/q 2 для данной точки поля не зависит от величины заряда q 2 . Поэтому это отношение может служить энергетической характеристикой электростатического поля, которая называется потенциалом поля,и равна отношению потенциальной энергии пробного заряда, помещенного в данную точку поля, к величине этого заряда

Из выражений (7.17) и (7.18) следует, что потенциал поля точечного заряда q равен

Работа по перемещению заряда в электростатическом поле равна произведению величины заряда на разность потенциалов в начальной и конечной точке перемещения

радиуса R с общим зарядом Q заряжен равномерно с объемной плотностью  (= dQ/dV- заряд, приходящийся на единицу объема). Учитывая соображения симметрии (см.п.3), можно показать, что для напряженности поля вне шара получится тот же результат, что и в предыдущем случае (см. (82.3)). Внутри же шара напряженность поля будет другая. Сфера радиуса r" < R охватывает заряд Q " = 4 / 3 r" 3 . Поэтому, согласно теореме Гаусса (81.2), 4r" 2 E =Q " / 0 = 4 / 3 r 3 / 0 . Учитывая, что =Q/(4 / 3 R 3), получим

Таким образом, напряженность ноля вне равномерно заряженного шара описывается формулой (82.3), а внутри его изменяется линейно с расстоянием r " согласно выражению (82.4). График зависимости E от r приведен на рис. 130.

5. Поле равномерно заряженного бесконечного цилиндра (нити). Бесконечный цилиндр

радиуса R (рис. 131) заряжен равномерно с линейной плотностью  (=dQ/dt - заряд, приходящийся на единицу длины). Из соображений симметрии следует, что линии напряженности будут направлены по радиусам круговых сечений цилиндра с одинаковой густотой во все стороны относительно оси цилиндра. В качестве замкнутой поверхности мысленно построим коаксиальный с заряженным цилиндр радиуса r и высотой l . Поток вектора Е сквозь торцы коаксиального цилиндра равен нулю (торцы параллельны линиям напряженности), а сквозь боковую поверхность -2rl Е. По теореме Гаусса (81.2), при r>R 2 rlE = l / 0 , откуда

Если rто замкнутая поверхность зарядов внутри не содержит, поэтому в этой области E =0. Таким образом, напряженность поля вне равномерно заряженного бесконечного цилиндра определяется выражением (82.5), внутри же его поле отсутствует.

§ 83. Циркуляция вектора напряженности электростатического поля

Если в электростатическом поле точечного заряда Q из точки 1 в точку 2 вдоль произвольной траектории (рис. 132) перемещается другой точечный заряд Q 0 , то сила, приложенная к заряду, совершает работу. Работа силы F на элементарном перемещении dl равна

Работа при перемещении заряда Q 0 из точки 1 в точку 2

не зависит от траектории перемещения, а определяется только положениями начальной 1 и конечной 2 точек. Следовательно, электростатическое поле точечного заряда является потенциальным, а электростатические силы - консервативными (см. §12).

Из формулы (83.1) следует, что работа, совершаемая при перемещении электрического заряда во внешнем электростатическом поле по любому замкнутому пути L, равна нулю, т. е.

Если в качестве заряда, переносимого в электростатическом поле, взять единичный точечный положительный заряд, то элементарная работа сил поля на пути dl равна Е dl =E l dl, где E l =E cos - проекция вектора Е на направление элементарного перемещения. Тогда формулу (83.2) можно записать в виде

Интеграл

называется циркуляцией вектора напряженности. Следовательно, циркуляция вектора напряженности электростатического поля вдоль любого замкнутого контура равна нулю. Силовое поле, обладающее свойством (83.3), называется потенциальным. Из обращения в нуль циркуляции вектора Е следует, что линии напряженности электростатического поля не могут быть замкнутыми, они начинаются и кончаются на зарядах (соответственно на положительных или отрицательных) или же уходят в бесконечность.

Формула (83.3) справедлива только для электростатического поля. В дальнейшем будет показано, что для поля движущихся зарядов условие (83.3) не выполняется (для него циркуляция вектора напряженности отлична от нуля).

Циркуляцией вектора напряженности называется работа, которую совершают электрические силы при перемещении единичного положительного заряда по замкнутому пути L

Практическое значение

Теорема о циркуляции играет в магнитостатике приблизительно ту же роль, что и теорема Гаусса электростатике. В частности, при наличии определённой симметрии задачи, она позволяет просто находить величину магнитного поля во всём пространстве по заданным токам. Например, для вычисления магнитного поля от бесконечного прямолинейного проводника с током по закону Био - Савара - Лапласа потребуется вычислить неочевидный интеграл, в то время как теорема о циркуляции (с учётом осевой симметрии задачи) позволяет дать мгновенный ответ:

26. Диполь. Поле диполя.

Электрический дипольный момент - векторная физическая величина, характеризующая, наряду с суммарным зарядом (и реже используемыми высшими мультипольными моментами), электрические свойства системы заряженных частиц (распределения зарядов) в смысле создаваемого ею поля и действия на нее внешних полей. Главная после суммарного заряда и положения системы в целом (ее радиус-вектора) характеристика конфигурации зарядов системы при наблюдении ее издали.

Его поле. Для фиксированных угловых координат (то есть на луче, идущем из центра электрического диполя на бесконечность) напряжённость статического электрического поля диполя или в целом нейтральной системы зарядов, имеющей ненулевой дипольный момент, на больших расстояниях r асимптотически приближается к виду r−3, электрический потенциал - к r−2. Таким образом, статическое поле диполя убывает на больших расстояниях быстрее, чем поле простого заряда (но медленнее, чем поле любого более старшего мультиполя).

Напряжённость электрического поля и электрический потенциал неподвижного или медленно движущегося диполя (или в целом нейтральной системы зарядов, имеющей ненулевой дипольный момент) с электрическим дипольным моментом на больших расстояниях в главном приближении выражается как:

где - единичный вектор из центра диполя в направлении точки измерения, а точкой обозначено скалярное произведение.

Достаточно просты выражения (в том же приближении, тождественно совпадающие с формулами, приведенными выше) для продольной (вдоль радус-вектора, проведенного от диполя в данную точку) и поперечной компонент напряженности электрического поля:

где - угол между направлением вектора дипольного момента и радиус-вектором в точку Третья компонента напряженности электрического поля - ортогональная плоскости, в которой лежат вектор дипольного момента и радиус-вектор, - всегда равна нулю.

27. Строение диэлектрика. Диэлектрик во внешнем эл. поле. Механизмы поляризации диэлектриков

Строение диэлектрика.

Вещество, внесенное в электрическое поле, может существенно изменить его. Это связано с тем, что вещество состоит из заряженных частиц. В отсутствие внешнего поля частицы распределяются внутри вещества так, что создаваемое ими электрическое поле в среднем по объемам, включающим большое число атомов или молекул, равно нулю. При наличии внешнего поля происходит перераспределение заряженных частиц, и в веществе возникает собственное электрическое поле. Полное электрическое поле складывается в соответствии с принципом суперпозиции из внешнего поля и внутреннего поля создаваемого заряженными частицами вещества.

В отличие от проводников, в диэлектриках (изоляторах) нет свободных электрических зарядов. Они состоят из нейтральных атомов или молекул. Заряженные частицы в нейтральном атоме связаны друг с другом и не могут перемещаться под действием электрического поля по всему объему диэлектрика.

Диэлектрик во внешнем эл. поле.

При внесении диэлектрика во внешнее электрическое поле в нем возникает некоторое перераспределение зарядов, входящих в состав атомов или молекул. В результате такого перераспределения на поверхности диэлектрического образца появляются избыточные нескомпенсированные связанные заряды. Все заряженные частицы, образующие макроскопические связанные заряды, по-прежнему входят в состав своих атомов.

Связанные заряды создают электрическое поле которое внутри диэлектрика направлено противоположно вектору напряженности внешнего поля. Этот процесс называется поляризацией диэлектрика . В результате полное электрическое поле внутри диэлектрика оказывается по модулю меньше внешнего поля

Физическая величина, равная отношению модуля напряженности внешнего электрического поля в вакууме к модулю напряженностиполного поля в однородном диэлектрике, называется диэлектрической проницаемостью вещества .

Механизмы поляризации диэлектриков

Существует несколько механизмов поляризации диэлектриков. Основными из них являются ориентационная и электронная поляризации. Эти механизмы проявляются главным образом при поляризации газообразных и жидких диэлектриков.

Ориентационная или дипольная поляризация возникает в случае полярных диэлектриков , состоящих из молекул, у которых центры распределения положительных и отрицательных зарядов не совпадают. Такие молекулы представляют собой микроскопические электрические диполи – нейтральную совокупность двух зарядов, равных по модулю и противоположных по знаку, расположенных на некотором расстоянии друг от друга. Дипольным моментом обладает, например, молекула воды, а также молекулы ряда других диэлектриков (H 2 S, NO 2 и т. д.).

При отсутствии внешнего электрического поля оси молекулярных диполей из-за теплового движения ориентированы хаотично, так что на поверхности диэлектрика и в любом элементе объема электрический заряд в среднем равен нулю.

При внесении диэлектрика во внешнее поле возникает частичная ориентация молекулярных диполей. В результате на поверхности диэлектрика появляются нескомпенсированные макроскопические связанные заряды, создающие поленаправленное навстречу внешнему полю(рис. 1.5.3).

Поляризация полярных диэлектриков сильно зависит от температуры, так как тепловое движение молекул играет роль дезориентирующего фактора.

Электронный или упругий механизм проявляется при поляризации неполярных диэлектриков, молекулы которых не обладают в отсутствие внешнего поля дипольным моментом. Под действием электрического поля молекулы неполярных диэлектриков деформируются – положительные заряды смещаются в направлении вектора а отрицательные – в противоположном направлении. В результате каждая молекула превращается в электрический диполь, ось которого направлена вдоль внешнего поля. На поверхности диэлектрика появляются нескомпенсированные связанные заряды, создающие свое поленаправленное навстречу внешнему полюТак происходит поляризация неполярного диэлектрика (рис. 1.5.4).

Деформация неполярных молекул под действием внешнего электрического поля не зависит от их теплового движения, поэтому поляризация неполярного диэлектрика не зависит от температуры. Примером неполярной молекулы может служить молекула метана CH 4 . У этой молекулы четырехкратно ионизированный ион углерода C 4– располагается в центре правильной пирамиды, в вершинах которой находятся ионы водорода H + . При наложении внешнего электрического поля ион углерода смещается из центра пирамиды, и у молекулы возникает дипольный момент, пропорциональный внешнему полю.

Электрическое поле связанных зарядов, возникающее при поляризации полярных и неполярных диэлектриков, изменяется по модулю прямо пропорционально модулю внешнего поляВ очень сильных электрических полях эта закономерность может нарушаться, и тогда проявляются различныенелинейные эффекты . В случае полярных диэлектриков в сильных полях может наблюдаться эффект насыщения , когда все молекулярные диполи выстраиваются вдоль силовых линий. В случае неполярных диэлектриков сильное внешнее поле, сравнимое по модулю с внутриатомным полем, может существенно деформировать атомы или молекулы вещества и изменить их электрические свойства. Однако, эти явления практически никогда не наблюдаются, так как для этого нужны поля с напряженностью порядка 10 10 –10 12 В/м. Между тем, гораздо раньше наступает электрический пробой диэлектрика.

У многих неполярных молекул при поляризации деформируются электронные оболочки, поэтому этот механизм получил название электронной поляризации . Этот механизм является универсальным, поскольку деформация электронных оболочек под действием внешнего поля происходит в атомах, молекулах и ионах любого диэлектрика.

В случае твердых кристаллических диэлектриков наблюдается так называемая ионная поляризация , при которой ионы разных знаков, составляющие кристаллическую решетку, при наложении внешнего поля смещаются в противоположных направлениях, вследствие чего на гранях кристалла появляются связанные (нескомпенсированные) заряды. Примером такого механизма может служить поляризация кристалла NaCl, в котором ионы Na + и Cl – составляют две подрешетки, вложенные друг в друга. В отсутствие внешнего поля каждая элементарная ячейка кристалла NaCl (см. Часть I § 3.6) электронейтральна и не обладает дипольным моментом. Во внешнем электрическом поле обе подрешетки смещаются в противоположных направлениях, т. е. кристалл поляризуется.

При поляризации неоднородного диэлектрика связанные заряды могут возникать не только на поверхностях, но и в объеме диэлектрика. В этом случае электрическое поле связанных зарядов и полное полемогут иметь сложную структуру, зависящую от геометрии диэлектрика. Утверждение о том, что электрическое полев диэлектрике в ε раз меньше по модулю по сравнению с внешним полемстрого справедливо только в случаеоднородного диэлектрика , заполняющего все пространство, в котором создано внешнее поле. В частности:

Если в однородном диэлектрике с диэлектрической проницаемостью ε находится точечный заряд Q , то напряженность поля создаваемого этим зарядом в некоторой точке, и потенциал φ в ε раз меньше, чем в вакууме:

28 . Проводники. Эл. поле в проводниках. Электроемкость.

Конденсатор.

При перемещении заряда по произвольному замкнутому пути L работа сил электростатического поля равна нулю. Поскольку, конечное положение заряда равно начальному r 1 =r 2 , то и (кружок у знака интеграла указывает на то, что интегрирование производится по замкнутому пути). Так как и , то . Отсюда получаем . Сократив обе части равенства на q 0 , получим или , где E l =Ecosa - проекция вектора Е на направление элементарного перемещения . Интеграл называется циркуляцией вектора напряженности . Таким обра­зом, циркуляция вектора напряженности электростатического поля вдоль лю­бого замкнутого контура равна нулю . Это заключение есть условие потенциаль­ности поля .

Потенциальная энергия заряда.

В потенциальном поле тела обладают потенциальной энергией и работа консервативных сил совершается за счет убыли потенциальной энергии.

Поэтому работу A 12 можно представить, как разность потенциальных энергий заряда q 0 в начальной и конечной точках поля заряда q :

Потенциальная энергия заряда q 0 , находящегося в поле заряда q на расстоянии r от него равна

Считая, что при удалении заряда на бесконечность, потенциальная энергия обращается в нуль, получаем: const = 0 .

Для одноименных зарядов потенциальная энергия их взаимодействия (отталкивания) положительна , для разноименных зарядов потенциальная энергия из взаимодействия (притяжения ) отрицательна .

Если поле создается системой n точечных зарядов, то потенциальная энергия заряда q 0 , находящегося в этом поле, равна сумме его потенциальных энергий, создаваемых каждым из зарядов в отдельности:

Потенциал электростатического поля.

Отношение не зависит от пробного заряда q0 и является, энергетической характеристикой поля, называемой потенциалом :



Потенциал ϕ в какой-либо точке электростатического поля есть скалярная физическая величина , определяемая потенциальной энергией единичного положительного заряда, помещенного в эту точку.

1.7 Связь между напряженностью и потенциалом.

Связь между потенциалом и напряженностью электростатического поля. Эквипотенциальные поверхности.

Как ранее показано, работа сил электростатического поля при перемещении за­ряда q 0 может быть записана с одной стороны, как , с другой же - как убыль потенциальной энергии, т.е. . Здесь dr - есть проекция элементарного перемещения dl заряда на направление силовой линии , - есть малая разность потенциалов двух близко расположенных точек поля. Приравняем правые части равенств и сократим на q 0 . Получаем соотношения , . Отсюда .

Последнее соотношение представляет связь ос­новных характеристик электро­статического поля Е и j. Здесь - быстрота изменения потенциала в направле­нии силовой линии. Знак ми­нус указывает на то, что вектор направлен в сторону убывания потенциала. Поскольку , можно записать проекции вектора на координатные оси: . Отсюда следует, что . Выраже­ние, стоящее в скобках, называется градиентом скаляра j и обозначается как gradj.

Напряженность электростатического поля равна гра­диенту потенциала, взя­тому с обратным знаком .

Для графического изображения распределения потенциала электростатичес­кого поля пользуются эквипотенциальными поверхностями - поверхностями, потен­циал всех точек которых одинаков . Потенциал поля одиночного точечного заряда . Эквипотенциальные поверх­нос­ти в данном случае есть концентрические сферы с центром в точке расположе­ния за­ряда q (рис.1.13). Эквипотенциальных поверхностей можно провести бесконеч­ное множество, однако принято чертить их с густотой, пропорциональной величине Е.

1.8 Электроемкость, плоский конденсатор.

Электроемкость.

Рассмотрим уединенный проводник - проводник, удаленный от других тел и зарядов. Из опыта следует, что разные проводники, будучи одинаково заряженными, имеют разные потенциалы.

Физическая величина C , равная отношению заряда проводника q к его потенциалу ϕ , называется электрической емкостью этого проводника.

Электроемкость уединенного проводника численно равна заряду, который нужно сообщить этому проводнику для того, чтобы изменить его потенциал на единицу.

Она зависит от формы и размеров проводника и от диэлектрических свойств окружающей среды. Емкости геометрически подобных проводников пропорциональны их линейным размерам.

Пример : Рассмотрим уединенный шар радиуса R, находящийся в однородной среде с диэлектрической проницаемостью e. Ранее было получено, что потенциал шара ра­вен . Тогда емкость шара , т.е. зависит только от его ра­диуса.

Единица электроемкости -фарад(Ф):1Ф-емкость такогоуединенного проводника, потенциал которого изменяется на 1В при сообщении ему заряда 1Кл. Емкостью 1Ф обладает шар с радиусом R = 9 ⋅10 6 км. Емкость Земли 0,7мФ.

Теорема о циркуляции

Ранее мы выяснили, что на заряд (q), который находится в электростатическом поле, действуют консервативные силы, работа ($A$) которых на любом замкнутом пути (L) равна нулю:

где $\overrightarrow{s}$- вектор перемещения (не путать с площадью), $\overrightarrow{E}$ -- вектор напряженности поля.

Для единичного положительного заряда можем записать:

Интеграл в левой части уравнения (2) есть циркуляция вектора напряженности по контуру L. Характерным свойством электростатического поля является то, что циркуляция его вектора напряжённости по любому замкнутому контуру равна нулю. Такое утверждение называется теоремой о циркуляции вектора напряженности электростатического поля.

Докажем теорему о циркуляции на том основании, что работа поля по перемещению заряда не зависит от траектории перемещения заряда в электростатическом поле, что выражается равенством:

где $L_1\ и\ L_2$ различные пути между точками А и В. Учтем, что при замене местами пределов интегрирования получим:

Выражение (4) представим как:

где $L=L_1+L_2$. Так теорема доказана.

Следствием теоремы о циркуляции является то, что линии напряженности электростатического поля незамкнуты. Они начинаются на положительных зарядах, а заканчиваются на отрицательных или уходят в бесконечность. Теорема верна именно для статичных зарядов. Другое следствие теоремы: непрерывность тангенциальных составляющих напряженности (в отличие от нормальных составляющих). Это значит, что компоненты напряженности, которые являются касательными к выбранной любой поверхности во всякой ее точке, имеют по обе стороны поверхности равные значения.

Выделим произвольную поверхность S, которая опирается на контур L (рис.1).

В соответствии с формулой Стокса (теоремой Стокса) интеграл от ротора вектора напряженности ($rot\overrightarrow{E}$), взятый по поверхности S равен циркуляции вектора напряженности вдоль контура, на который опирается данная поверхность:

где $d\overrightarrow{S}=dS\cdot \overrightarrow{n}$, $\overrightarrow{n}$ -- единичный вектор перпендикулярный участку dS. Ротор ($rot\overrightarrow{E}$) характеризует интенсивность «завихрения» вектора. Наглядное представление о роторе вектора можно получить, если маленькую легкую крыльчатку (рис.2) поместить в поток жидкости. В тех местах, где ротор не равен нулю, крыльчатка будет вращаться, причем скорость ее вращения будет тем больше, чем больше проекция модуль проекции ротора на ось крыльчатки.

При практическом вычислении ротора чаще других используют формулы:

Так как в соответствии с уравнением (6) циркуляция вектора напряжённости равна нулю, то мы получаем:

Условие (8) должно выполняться для любой поверхности S, которая опирается на контур L. Это возможно только в том случае, если подынтегральное выражение:

причем для каждой точки поля.

По аналогии с крыльчаткой на рис. 2 представим себе электрическую «крыльчатку». На концах такой «крыльчатки» расположены одинаковые по величине заряды q. Система помещена в однородное поле с напряженностью E. В тех местах, где $rot\overrightarrow{E}\ne 0$ такое «устройство» будет вращаться с ускорением, которое зависит от проекции ротора на ось крыльчатки. В случае, электростатического поля такое «устройство» не стало бы вращаться ни при какой ориентации оси. Так как отличительной особенностью электростатического поля является то, что оно безвихревое. Уравнение (9) представляет теорему о циркуляции в дифференциальной форме.

Пример 1

Задание: На рис. 3 изображено электростатическое поле. Что можно сказать о характеристиках данного поля из рисунка?

О данном поле можно сказать, что существование такого электростатического поля невозможно. Если выделить контур (он изображен пунктиром). Для такого контура циркуляция вектора напряженности:

\[\oint\limits_L{\overrightarrow{E}d\overrightarrow{s}\ne 0}\left(1.1\right),\]

что противоречит теореме о циркуляции для электростатического поля. Напряженность поля определяется густотой силовых линий, она в разных частях поля не одинакова, в результате работа по замкнутому контуру будет отличаться от нуля, следовательно, циркуляция вектора напряженности не равна нулю.

Пример 2

Задание: Исходя из теоремы о циркуляции, покажите, что тангенциальные составляющие вектора напряженности электростатического поля не изменяются при переходе через границу раздела диэлектриков.

Рассмотрим границу между двумя диэлектриками с диэлектрическими проницаемостями ${\varepsilon }_2\ и\ {\varepsilon }_1$ (рис.4). Выберем на этой границе небольшой прямоугольный контур с параметрами a - длина, b - ширина. Ось Х проходит через середины сторон b.

Для электростатического поля выполняется теорема о циркуляции, которая выражается уравнением:

\[\oint\limits_L{\overrightarrow{E}d\overrightarrow{s}=0\ \left(2.1\right).}\]

При небольших размерах контура циркуляция вектора напряженности и в соответствии с указанным направлением обхода контура интеграл в формуле (2.1) можно представить как:

\[\oint\limits_L{\overrightarrow{E}d\overrightarrow{s}=E_{1x}a-E_{2x}a+\left\langle E_b\right\rangle 2b=0\ \left(2.2\right),}\]

где $\left\langle E_b\right\rangle $- среднее значение $\overrightarrow{E}$ на участках перпендикулярных к границе раздела.

Из (2.2) следует, что:

\[{(E}_{2x}-E_{1x})a=\left\langle E_b\right\rangle 2b\ (2.3).\]

Если $b\to 0$, то получаем, что:

Выражение (2.4) выполняется при произвольном выборе оси X, которая лежит на границе раздела диэлектриков. Если представить вектор напряженности в виде двух составляющих (тангенциальной $E_{\tau }\ $ и нормальной $E_n$):

\[\overrightarrow{E_1}=\overrightarrow{E_{1n}}+\overrightarrow{E_{1\tau }},\overrightarrow{E_2}=\overrightarrow{E_{2n}}+\overrightarrow{E_{2\tau }}\ \left(2.5\right).\]

В таком случае из (2.4) запишем:

где $E_{\tau i}$- проекция вектора напряженности на орт $\tau $, направленный вдоль границы раздела диэлектриков.