Выветривание горных пород. Виды выветривания и их классификация

Выветривание (синоним - гипергенез) - это совокупность абиотических и биологических процессов разрушения и образования горных пород и слагающих их минералов под воздействием агентов атмосферы, биосферы, гидросферы в верхних слоях земной коры. Неотъемлемой частью процессов выветривания являются процессы денудации - переноса продуктов разрушения горных пород в пониженные участки под действием внешних сил (вода, тепло, ветер и др.). В результате этих процессов образуется кора выветривания – вещественная часть литогенной основы. Мощность современной коры выветривания составляет от нескольких метров до десятков метров.

Выделяют три вида выветривания: физическое, химическое и биологическое.

Физическое выветривание - это процесс разрушения (растрескивания, дробления) минералов под воздействием давления, возникающего за счет суточных и сезонных колебаний температуры (тепловое расширение и сжатие минералов, замерзание и оттаивание воды), механической деятельности ветра, потоков воды, корней растений. В результате увеличивается дисперсность и удельная поверхность пород, снижается их плотность.

Химическое выветривание - процесс химического изменения и разрушения горных пород и минералов с образованием новых минералов и, в конечном итоге, новых пород.

Химические реакции происходят при участии воды, углекислого газа, кислорода и других веществ.

Вода растворяет вещества, содержащиеся в горных породах и минералах, при этом в раствор поступают катионы и анионы, изменяющие кислотно-щелочные условия. Это увеличивает растворяющую способность воды. Разложение минералов водой усиливается с повышением температуры и насыщением ее углекислым газом, который подкисляет реакцию среды. Гидролиз минералов, реагирующих с водой, приводит к образованию новых минералов. В преобразовании минералов в присутствии угольной кислоты большую роль играют реакции карбонатизации (образования карбонатов) и декарбонатизации (разрушение карбонатов).

Реакции окисления-восстановления принимают активное участие в процессах гипергенеза. Красные, красно-бурые, желтые окраски кор выветривания обусловлены окисленными формами железа, марганца и других элементов. В восстановительных условиях преобладают сизые и серые тона. В ходе химического выветривания развивается элювиальный процесс - вынос с растворами ряда элементов за пределы коры выветривания. В первую очередь вымываются наиболее растворимые соединения, что обусловливает стадийность процесса выветривания. В соответствии со стадийностью и химическим составом существует большое разнообразие кор выветривания. Они подразделяются по возрасту: современные, древние, ископаемые; по геохимическому типу: элювиальные, транзитные, аккумулятивные; по вещественному составу и стадиям выветривания: обломочные (состоят из обломков пород), засоленные (содержат водорастворимые соли), сиаллитные (отношение SiO 2:Al 2 O 3 >2), аллитные (SiO 2:Al 2 O 3 <2). Обломочные, сиаллитные коры выветривания формируются и сохраняются в условиях умеренного климата и характеризуются начальными стадиями выветривания; аллитные, более зрелые, - формируются в условиях влажного тропического климата.



В процессе выветривания преобладает разрушение первичных минералов, которые образовались в глубоких слоях земной коры при высоких температурах и давлении. Попадая на поверхность земной коры, в иные термодинамические условия, они теряют устойчивость.

Первичные минералы различаются по устойчивости к выветриванию в соответствии со строением и составом. Наиболее устойчивым из широко распространенных минералов является кварц, к мало устойчивым относятся полевые шпаты. Образующиеся в процессе гипергенеза вторичные глинистые минералы играют большую роль в процессах почвообразования и являются более устойчивыми к выветриванию в условиях земной поверхности.

Биологическое выветривание - процесс разрушения и изменения горных пород и минералов под действием организмов и продуктов их жизнедеятельности. При биологическом выветривании механизмы процессов разрушения, изменения минералов и пород те же, что и при физическом и химическом выветривании. Однако интенсивность процессов существенно увеличивается, поскольку увеличивается агрессивность среды. Корни растений и микроорганизмы выделяют во внешнюю среду углекислый газ и различные кислоты (щавелевую, янтарную, яблочную и др.). Нитрофикаторы образуют азотную кислоту, серобактерии - серную. В процессе разложения мертвых остатков растений и животных образуются агрессивные гумусовые кислоты - фульвокислоты, способные разрушать минералы. Многие виды бактерий, грибов, водоросли, лишайники могут усваивать элементы питания непосредственно из первичных минералов, разрушая их при этом. Именно таким является механизм первичного почвообразования.

В верхней части коры выветривания процесс выветривания протекает совместно с процессом почвообразования и является неотъемлемой составной частью почвообразования, так же как почвообразование является неотъемлемой частью выветривания. Однако в более глубоких слоях за пределами почвенного профиля, а также в подводных ландшафтах выветривание выделяется как самостоятельный процесс. В этих слоях в процессах выветривания так же принимают участие микроорганизмы и продукты их жизнедеятельности.

Процессы выветривания являются начальным этапом большого геологического круговорота веществ. Геологические процессы разделяются на две большие группы: эндогенные (внутренние), которые зарождаются в глубинных оболочках Земли за счет энергии радиоактивного распада, и экзогенные (поверхностные), обусловленные внешней энергией.

К эндогенным (внутренним) процессам относятся: магнетизм, метаморфизм, вулканизм, движения земной коры (землетрясения и горообразование).

К экзогенным - выветривание, деятельность атмосферных и поверхностных вод, ледников, подземных вод, морей и океанов, животных и растительных организмов. Особо следует выделить геологическую деятельность человека - техногенез. Взаимодействие внутренних и внешних геологических процессов объединяет большой геологический круговорот веществ.

В результате действия эндогенных процессов образуются крупные формы рельефа земной поверхности: горные системы, возвышенности, низменности, океанические впадины. Под действием экзогенных процессов происходит разрушение магматических горных пород, перемещение продуктов разрушения в реки, моря и океаны, и формирование осадочных пород. В результате движений земной коры осадочные породы погружаются в глубокие слои, подвергаются процессам метаморфизма (действию высоких температур и давления), и образуются метаморфические породы. Последние при погружении в более глубокие слои могут переходить в расплавленное состояние (магматизация), а затем в результате вулканической деятельности поступать в верхние слои литосферы или на ее поверхность в виде магматических пород. Таким образом, происходит образование основных групп почвообразующих пород и различных форм рельефа.

2.3.2. Систематика осадочных пород.

По происхождению они подразделяются на морские и континентальные. По возрасту осадочные породы подразделяются на древние и четвертичные. Четвертичные отложения образовались в последние 1,5-2 млн лет и продолжают формироваться в настоящее время. Четвертичные осадочные породы характеризуются рыхлым сложением, невысокой плотностью, сложены частицами разного размера и разной степени окатанности: валуны, галечники, пески, суглинки и др.

Древние осадочные породы так же состоят из обломков и мелких частиц разного размера, но в отличие от четвертичных имеют плотное сложение, более высокую плотность, как правило, сцементированы соединениями кремнезема, железа, извести и др. В земной коре преобладают древние осадочные породы, которые накапливались во все геологические эпохи, но в качестве почвообразующих преобладают четвертичные отложения, перекрывающие сравнительно тонким слоем (от нескольких сантиметров до нескольких метров, иногда десятков метров) другие виды горных пород, получивших название коренные.

По составу осадочные породы подразделяются на обломочные, хемогенные и биогенные.

Обломочные отложения различаются по величине обломков и частиц: валуны, камни, гравий, щебень, пески, суглинки и глины. К ним относятся также древние сцементированные аналоги: брекчии, конгломераты, песчаники, глинистые сланцы.

Хемогенные отложения образовались в результате выпадения солей из водных растворов в морских заливах, озерах, в условиях сухого жаркого климата или в результате химических реакций. К ним относятся галоиды (каменная и калийная соль), сульфаты (гипс, ангидрид), карбонаты (известняковый туф, известняк, доломит, мергель), силикаты (кремневый туф, или гейзерит) и фосфаты (фосфорит). Многие из перечисленных пород - гипс, ангидрид, калийная соль, фосфориты, известняковые туфы, известняки, доломит, мергель - являются ценными агрономическими рудами и используются как химические мелиоранты, минеральные удобрения и как сырье для производства цемента и химической промышленности.

Почвы, образующиеся на чистых химических осадках солей, как правило, характеризуются крайне низким плодородием; на известняках и меловых отложениях, особенно в условиях влажного климата, формируются плодородные почвы с высоким содержанием гумуса и благоприятными физическими свойствами.

Биогенные отложения образовались из скоплений остатков растений и животных. По составу они подразделяются на карбонатные, кремнистые и углеродистые.

К карбонатным породам относятся биогенные известняки и мел. Примером кремнистых пород является доломит, состоящий из остатков диатомовых водорослей. Углеродистые породы имеют высокое содержание органических веществ и обладают горючестью. К ним относятся ископаемые угли, торф, сапропель, а также нефть и газы. Известно их большое практическое значение.

Сапропель формируется на дне пресноводных озер и представляет собой ил, обогащенный органическим веществом и элементами питания для растений. Используется он как органическое удобрение и мелиорант. Некоторые бурые угли и лигниты так же используются как органо-минеральные удобрения и мелиоранты.

2.3.3. Главные генетические типы четвертичных осадочных пород

Элювиальные отложения (элювий) - продукты выветривания массивно-кристаллических пород, оставшиеся на месте их образования. Элювий характеризуется разным составом и мощностью, в зависимости от состава исходных пород (элювий гранитов, базальтов и др.), длительности процесса выветривания, климатических условий, в которых происходило выветривание. Для него характерен постепенный переход от землистого материала верхних слоев, через крупнообломочный к исходной коренной породе. Расположен элювий на вершинах водоразделов, где смыв выражен слабо или отсутствует. Свойства почв, сформировавшихся на элювии, также очень разнообразны (от кислых до щелочных, от малоплодородных до высокоплодородных) и зависят от состава и свойств элювиальных отложений и условий формирования.

Делювиальные отложения (делювий) - продукты эрозии, отложенные временными водотоками дождевых и талых вод в нижней части склонов, примыкающих к горам, водоразделам, к понижениям и западинам на водоразделах. Они имеют хорошо выраженную дифференциацию вдоль склона. У подножья крутых склонов откладываются более крупные грубообломочные наносы, ниже - более отсортированные и тонкозернистые отложения.

Состав делювия определяется составом пород, которыми сложены горы и водоразделы. Он может включать обломки массивно-кристаллических пород, пески и состоять из суглинистого и глинистого материала, например, переотложенного лесса, моренных суглинков. Как правило, делювиальные отложения имеют небольшую мощность до 2-5 м и залегают в виде пологих шлейфов.

Пролювиальные отложения (пролювий) образовались в результате переноса и отложения продуктов выветривания временными горными реками и обладающими большой силой потоками у подножий склонов. Характеризуются плохой отсортированностью, включают обломки разного размера и разной степени окатанности. У подножий гор они образуют конусы выноса и часто сочетаются с делювиальными отложениями, образуя делювиально-пролювиальные отложения.

Аллювиальные отложения (аллювий) образовались в результате переноса и отложения продуктов выветривания речными водами. Реками переносятся вещества, поступающие в них с поверхностным стоком. Кроме того вода в реках совершает большую эрозионную работу. Размыв и масса транспортируемого материала резко возрастает с увеличением скорости течения, которая зависит от уклона местности. При снижении скорости движения воды в период паводков в пойме, в дельтах рек, в старицах происходит отложение и накопление транспортируемого материала - аккумуляция. Различают русловый аллювий, содержащий более крупные гравелистые и песчаные материалы; отложения стариц представлены супесями, суглинками, илами с примесью органических веществ. Пойменные отложения прирусловой части, где скорость воды наиболее высокая, имеют более крупнозернистый состав (песчаный и супесчаный) с хорошо выраженной слоистостью, связанной с изменением скорости движения воды в разные годы и в разные периоды паводков. Центральная пойма сложена более тонким суглинистым материалом, поскольку скорость воды здесь не высокая.

Различают древнеаллювиальные отложения (ими сложены речные террасы) и современные - в поймах рек. Последние продолжают формироваться в настоящее время. Аллювий, как правило, обогащен элементами питания для растений, поэтому почвы на аллювиальных отложениях обладают повышенным плодородием.

Озерные отложения представляют собой донные отложения озер. Они сложены наиболее тонкими частицами мелкозема - глинами и илами с хорошо выраженной слоистостью (ленточные глины), отражающей сезонные и многолетние процессы их формирования. Илы с высоким содержанием органических веществ (15-20%) называются сапропелем, который используется как ценное органическое удобрение, обогащенное элементами питания для растений. По мере обмеления и зарастания озер образуются болота, которые постепенно превращаются в мощные торфяники. Озерные болотные отложения часто имеют повышенное содержание извести и железа, а в сухих и жарких областях обогащены водорастворимыми солями, гипсом, карбонатами кальция. Большое распространение озерные отложения имеют в северо-западных областях европейской части России, в Прикаспийской низменности, в Западной Сибири.

Морские отложения - это донные отложения морей. При отступлении морей (трансгрессии) они остаются в качестве почвообразующих пород. Значительное распространение имеют в Прикаспийской низменности, в Приазовье, на побережьях северных морей. Морские отложения часто содержат водорастворимые соли, биогенные известняки, ракушечники, мел. На таких породах, особенно в южных областях, часто формируются засоленные почвы. Они так же обусловливают повышенную степень минерализации грунтовых вод.

Ледниковые (гляциальные), или моренные отложения - продукты выветривания различных пород, перемещенные и отложенные ледником. Ледником называют естественное скопление кристаллического льда, имеющего значительные размеры. Обладая пластическими свойствами, ледник движется под действием силы тяжести. Движение его возможно при толщине льда 15-20 м, когда масса превышает силу трения. Скорость движения горных ледников составляет 1-7 м в сутки, а материковых - до 20 и более метров.

Обширная территория России в ледниковую эпоху подвергалась материковому оледенению в связи с похолоданиями климата. Ледниковые эпохи неоднократно сменялись межледниковыми, которые характеризовались отступлением ледников, а талые воды вызывали морские регрессии. В эпоху максимального оледенения европейский ледниковый щит достигал более двух километров толщины, покрывал площадь 5,5 млн. км 2 , продвигаясь с севера на юг. Граница оледенения опускалась южнее Брянска, Киева.

Моренные отложения представляют собой несортированный грубообломочный материал, состоящий из глины, суглинков, супесей, песков красно-бурого или серого цвета с включениями гальки, камней разного размера, валунов. Они характеризуются отсутствием слоистости. Моренные отложения широко распространены в качестве почвообразующих в таежно-лесной зоне и на севере лесостепной в европейской части России. По химическому составу ледниковые отложения разделяются на алюмосиликатные моренные и карбонатные моренные суглинки. На алюмосиликатной морене формируются подзолистые и дерново-подзолистые почвы с низким естественным плодородием, с кислой реакцией среды, с большим количеством камней и валунов в верхних слоях и на поверхности. На карбонатной морене, в связи с наличием оснований кальция и магния, формируются более плодородные почвы с менее кислой и нейтральной реакцией среды. На таких почвах более интенсивно протекает биологический круговорот веществ Воды формирующиеся на карбонатных породах обогащены основаниями.

Флювиогляциальные (водноледниковые) отложения временных водотоков и замкнутых водоемов, образовавшихся при таянии ледника, соответственно происхождению и положению по отношению к леднику, подразделяются на две группы.

1. Приледниковые , залегающие позади конечноморенных гряд (озы, камы, друмлины), сложены песчано-гравийно-галечниковым материалом; ленточные глины - отложения приледниковых озер, в которых чередуются прослойки песка и глины.

2. Внеледниковые отложения образованы потоками вод, вытекающими из-под ледников, и расположены впереди каменно-моренных гряд. Их называют зандрами. Зандровые равнины сложены песчаными и супесчаными отложениями, слоистыми осадками с включениями гравия, гальки. К равнинам такого типа могут быть отнесены Мещерская низменность, Полесье.

Покровные суглинки относятся к внеледниковым отложениям и рассматриваются как отложения мелководных приледниковых разливов талых вод. Они перекрывают морену сверху слоем 3-5 м, откуда и получили название. Покровные суглинки имеют желто-бурую окраску, хорошо отсортированы, не содержат камней и валунов. В их составе преобладают фракции крупной пыли (0,05 - 0,01 мм) и ила (<0,001 мм). Как правило, покровные суглинки не содержат карбонатов. В качестве почвообразующих они широко распространены в таежно-лесной и в северной части лесо-степной зоны наряду с моренными отложениями. На них формируются подзолистые, дерново-подзолистые и серые лесные почвы.

Почвы на покровных суглинках, особенно легко- и среднесуглинистые разновидности, обладают более высоким плодородием по сравнению с такими же почвами на моренных отложениях.

Лессы и лессовидные суглинки имеют различное неокончательно установленное происхождение. Считается, что они могут быть водно-ледникового, древнеаллювиального, эолового, делювиально-пролювиального происхождения с последующим преобразованием в условиях аридного климата. Эти суглинки характеризуются палевой окраской, повышенным содержанием пылеватых и илистых фракций, рыхлым сложением, высокой пористостью, высоким содержанием карбонатов кальция, а на юге - гипса и водорастворимых солей. Они распространены на больших площадях в лесостепной, степной и сухостепной зонах на Русской равнине, равнинах Сибири, в Предкавказье. На них образовались высокоплодородные серые лесные почвы, черноземы, каштановые почвы, сероземы Средней Азии.

Эоловые отложения образовались в результате деятельности ветра. Эол, по древнегреческой мифологии, - бог ветра. Разрушительная деятельность ветра слагается из коррозии и дефляции.

Коррозия - обтачивание, шлифование песком горных пород, скал ветром. Дефляция - сдувание и перенос ветром мелких частиц почв и горных пород. Оба эти процесса часто объединяют понятием ветровой эрозии. К эоловым отложениям относят пески дюн, барханов, барханных гряд. Они образуются, преимущественно, при перевевании аллювиальных, морских, флювиогляциальных, озерных песков. Характерная особенность эоловых песков - подвижность, рыхлое сложение, хорошая сортировка, отшлифованная округленность песчинок, высокая водопроницаемость. Почвы, формирующиеся на песках, обладают слабой водоудерживающей способностью и низким плодородием. Распространены в пустынях Средней Азии и на побережье Балтийского моря.

Двучленные и многочленные почвообразующие породы выделяются в тех случаях, когда в пределах почвенной толщи происходит смена пород. Наиболее часто встречаются в таежно-лесной зоне. Например, покровные суглинки, подстилаемые мореной или флювиогляциальными песками.

2.4. Влияние горных пород на другие компоненты ландшафта.

Горные породы оказывают влияние на все компоненты ландшафта. Почвы наследуют от горных (почвообразующих) пород гранулометрический, минералогический и химический составы, ряд физических свойств. Свойства почв отражаются в растительном покрове. На породах, обогащенных элементами питания и основаниями, как правило, образуются плодородные почвы с обильной растительностью, наоборот, на бедных породах формируются почвы с низким плодородием и скудной растительностью. Почвы, унаследовавшие негативные, с агрономической точки зрения, свойства, такие как каменистость, высокая плотность, наличие водорастворимых солей и др имеют специфическую растительность и требуют специальных затрат на их освоение и улучшение. Горные породы могут в корне изменять скорость и направление почвообразовательных процессов, что приводит к формированию азональных типов почв, например, дерново-карбонатные почвы в таежно-лесной зоне среди подзолистых.

С составом горных пород тесно связан состав почвенно - грунтовых вод. На карбонатных породах формируются грунтовые воды с повышенным содержанием кальция; на засолённых - с повышенным содержанием водорастворимых солей и др.

Можно привести примеры влияния пород на состав атмосферного воздуха. Это обилие пыли в воздухе на глинистых породах и почвах, обилие песка на песчаных, повышенные концентрации водорастворимых солей на территориях с засолёнными почвами и породами.

Выветривание

процесс разрушения и изменения горных пород в условиях земной поверхности под влиянием механического и химического воздействия атмосферы, грунтовых и поверхностных вод и организмов. По характеру среды, в которой происходит В., различают атмосферное и подводное (см. Гальмиролиз). По роду воздействия В. на горные породы различают: физическое В., ведущее только к механическому распаду породы на обломки; химическое В., при котором изменяется химический состав горной породы с образованием минералов, более стойких в условиях земной поверхности; органическое (биологическое) В., сводящееся к механическому раздроблению или химическому изменению породы в результате жизнедеятельности организмов. Своеобразным типом В. является почвообразование, при котором особенно активную роль играют биологические факторы. В. горных пород совершается под влиянием воды (атмосферные осадки и грунтовые воды), углекислоты и кислорода, водяных паров, атмосферного и грунтового воздуха, сезонных и суточных колебаний температуры, жизнедеятельности макро- и микроорганизмов и продуктов их разложения. На скорость и степень В., мощность продуктов В. и на их состав, кроме перечисленных агентов, влияют также рельеф и геологическое строение местности, состав и структура материнских пород. Подавляющая масса физических и химических процессов В. (окисление, сорбция, гидратация, коагуляция) происходит с выделением энергии. Обычно виды В. действуют одновременно, но в зависимости от климата тот или иной из них преобладает. Физическое В. происходит главным образом в условиях сухого и жаркого климата и связано с резкими колебаниями температуры горных пород при нагревании солнечными лучами (инсоляция) и последующем ночном охлаждении; быстрое изменение объёма поверхностных частей пород ведёт при этом к их растрескиванию. В областях с частыми колебаниями температуры около 0°С механическое разрушение пород происходит под влиянием морозного В.; при замерзании воды, проникшей в трещины, объём ее увеличивается и порода разрывается. Химические и органические В. свойственны главным образом пластам с влажным климатом. Основные факторы химического В. - воздух и особенно вода, содержащая соли, кислоты и щелочи. Водные растворы, циркулирующие в толще пород, помимо простого растворения, способны производить также сложные химические изменения.

Физические и химические процессы В. происходят в тесной взаимосвязи с развитием и жизнедеятельностью животных и растений и действиям продуктов их распада после смерти. Наиболее благоприятными для образования и сохранения продуктов В. (минералов) вместе являются условия тропического или субтропического климата и незначительное эрозионное расчленение рельефа. При этом толще горных пород, подвергшихся В., свойственна (в направлении сверху вниз) геохимическая зональность, выраженная характерным для каждой зоны комплексом минералов. Последние образуются в результате следующих друг за другом процессов: распада пород под влиянием физического В., выщелачивания оснований, гидратации, гидролиза и окисления. Эти процессы часто идут до полного разложения первичных минералов, вплоть до образования свободных окислов и гидроокислов. В зависимости от степени кислотности - щёлочности среды, участия биогенных факторов образуются минералы различного химического состава: от устойчивых в щелочной среде (в нижних горизонтах) до устойчивых в кислой или нейтральной среде (в верхних горизонтах). Разнообразие продуктов В., представленных различными минералами, определяется составом минералов первичных горных пород. Например, на ультраосновных породах (Серпентинит ах) верхняя зона представлена породами, в трещинах которых образуются карбонаты (Магнезит , Доломит), керолиты, сепиолит. Далее следуют горизонты: карбонатизации (кальцит, доломит, Арагонит), в верхней части которого по трещинам могут образоваться никелевые керолиты, Гарниерит , гидролиза, с которым связано образование Нонтронит а и накопление никеля (NiO до 2,5%): окремнения (Кварц , Опал , Халцедон). Зона конечного гидролиза и окисления сложена гидрогётитом (охристым), Гётит ом, Магнетит ом, окислами и гидроокислами марганца (никель и кобальтсодержащими). С процессами В. этого типа пород связаны крупные месторождения никеля, кобальта, магнезита и природно-легированных железных руд.

На карбонатитах (См. Карбонатиты), первично состоящих более чем на 90% из Кальцит а, Анкерит а или Сидерит а и небольшого количества минералов-примесей (пироксенов (См. Пироксены), амфиболов (См. Амфиболы), тантало-ниобатов (См. Тантало-ниобаты) и редкоземельных минералов), конечные продукты В. становятся рыхлыми. В результате окисления карбонатов накапливаются гидроокислы железа, а окислы кальция и магния подвергаются существенному выносу, что приводит к увеличению содержания минералов-примесей, устойчивых в гипергенных условиях. В связи с этим свежие карбонатиты даже при ничтожном содержании ниобия, тантала, редких земель и фосфора при В. могут дать промышленные месторождения этих элементов. При В. угля (физическом) происходят его разрыхление до образования угольной сажи, потеря блеска, изменение мощности пластов; в составе углей при химическом В. содержание углерода, водорода уменьшается, а кислорода в органической массе увеличивается, кроме того, увеличивается влажность угля, понижается способность его к спеканию, уменьшается теплопроводность.

В тех случаях, когда продукты В. не остаются на месте своего образования, а уносятся с поверхности выветривающихся пород водой или ветром, нередко возникают своеобразные формы рельефа, зависящие как от характера В., так и от свойств горных пород, в которых процесс как бы проявляет и подчеркивает особенности их строения. Для изверженных пород (гранитов, диабазов и др.) характерны массивные округлённые формы В.; для слоистых осадочных и метаморфических - ступенчатые (карнизы, ниши и т.п.). Неоднородность пород и неодинаковая устойчивость их различных участков против В. ведёт к образованию останцов в виде изолированных гор, столбов, башен и т.п. Во влажном климате на наклонных поверхностях однородных сравнительно легко растворимых в воде пород, например, известняков, стекающие воды разъедают неправильной формы углубления, разделённые острыми выступами и гребнями, в результате чего образуется неровная поверхность, известная под названием карров (См. Карры). В процессе перерождения остаточных продуктов В. образуется много растворимых соединений, которые сносятся грунтовой водой в водные бассейны и входят в состав растворённых солей или выпадают в осадок. Процессы В. приводят к образованию различных осадочных пород и многих полезных ископаемых: каолинов, охр, огнеупорных глин, песков, руд железа, алюминия, марганца, никеля, кобальта, россыпей золота, платины и др., зон окисления колчеданных месторождений с их полезными ископаемыми и др.

Лит.: Гинзбург И. И., Образование древней коры выветривания на территории СССР, её минералы и их свойства, в кн.: Труды юбилейной сессии, посвященной 100-летию со дня рождения В. В. Докучаева, М. - Л., 1949; Казанский Ю. П., Выветривание и его роль в осадконакоплении, М., 1969: Выветривание и литогенез, М., 1969.


Большая советская энциклопедия. - М.: Советская энциклопедия . 1969-1978 .

Синонимы :

Смотреть что такое "Выветривание" в других словарях:

    ВЫВЕТРИВАНИЕ, в геологии и физической географии разрушение и химическое изменение горных пород и минералов на поверхности Земли в результате физических, химических и органических процессов. Влияет на образование почвы и играет основную роль в… … Научно-технический энциклопедический словарь

    Выветривание - Совокупность процессов физического, химического и биологического разрушения минералов и горных пород верхней части литосферы под влиянием колебаний температуры, влажности, воздействия газов (атмосферных и растворенных в воде), растений и т.п.… … Словарь-справочник терминов нормативно-технической документации

    ВЫВЕТРИВАНИЕ, выветривания, мн. нет, ср. 1. Действие по гл. выветривать. Выветривание дурного запаха из комнаты. 2. Действие по гл. выветриваться (геол.). Выветривание шпата и гранита. Толковый словарь Ушакова. Д.Н. Ушаков. 1935 1940 … Толковый словарь Ушакова

    Основа почвообразовательного процесса, заключающаяся в превращении твердых горных пород в рыхлые образования. Разрушению породы, лежащей в основании почвенного горизонта или же на недавно обнажившейся поверхности, способствуют физические… … Экологический словарь

    Процесс изменения и разрушения минералов и г. п. на поверхности Земли под воздействием физ., хим. и орг. агентов. Различают физ. (механическое) и хим. В. Некоторые выделяют также орг. В. Физическое В. происходит под воздействием изменения… … Геологическая энциклопедия

    Акватолиз, гарь, исчезание, исчезновение, латеритизация, гальмиролиз Словарь русских синонимов. выветривание сущ., кол во синонимов: 8 акватолиз (2) … Словарь синонимов

    выветривание - Процесс изменения и разрушения минералов и горных пород на поверхности Земли под воздействием физических, химических и органических агентов. [Терминологический словарь по строительству на 12 языках (ВНИИИС Госстроя СССР)] [Словарь геологических… … Справочник технического переводчика

    Процесс разрушения и химического изменения горных пород в условиях земной поверхности или вблизи нее под влиянием колебаний температуры, химического и механического воздействия атмосферы, воды и организмов. Различают физические (механические),… … Большой Энциклопедический словарь

Одной из самых распространенных проблем в содержании сельскохозяйственных угодий является Она имеет место в засушливых регионах на открытой местности. Чаще всего к этому приводит естественное выветривание, с которым борются разными способами, как правило, базирующимися на регулировании гидротехнических показателей земельного покрова. Но есть и более широкое понимание выветривания, которое затрагивает не только почвенный слой, но и горные породы. В данном случае уместно ставить вопрос о том, что такое выветривание минералов? Это тоже естественный процесс разрушения, который, впрочем, может возникать не только по причине чрезмерной засушливости.

Общие сведения о выветривании

Под выветриванием понимается процесс внешнего воздействия на горную породу, при котором происходит разрушение или разложение ее материальной основы. Факторы, обуславливающие такие явления, могут иметь разный характер - от химических водных до атмосферных реакций. В большинстве случаев на минералы действует совокупность разных факторов, в итоге приводящих к обеднению горной породы. Причем в вопросе относительно того, что такое выветривание, нельзя опираться на классическое понимание деятельности непосредственно ветра или другого Даже привычные химические и физические процессы не полностью отражают полноту этого явления. Например, в разрушении могут участвовать и реакции газового действия. В частности, углекислота и кислород обеспечивают активное биохимическое влияние. Другое дело, что предпосылки для них могут быть связаны с результатом человеческой деятельности - к примеру, в рамках содержания того же сельского хозяйства.

Виды выветривания

Обычно выделяют химические и физические процессы выветривания, которые чаще всего взаимосвязаны и дополняют друг друга. Разве что интенсивность их может отличаться в зависимости от условий среды. Но также в некоторых регионах распространены процессы биогенного и радиационного влияния. Более того, именно такие явления зачастую носят наиболее выраженный характер разрушения. Химические и физические процессы все же более естественны и, можно сказать, происходят в постоянном режиме, только с разной степенью влияния на структуру природных материалов. Биогенные виды выветривания также могут быть следствием уже интенсивного химического разложения.

Активность того или иного фактора выветривания зависит не только от внешнего воздействия, но и от характеристик горной породы. Чаще всего специалисты рассматривают совокупность явлений. Так, в качестве первостепенных факторов, которые обуславливают те или иные процессы выветривания, выделяют климат, особенности рельефа, тектонические характеристики, состав и структуру породы.

Процесс физического выветривания

Среди основных причин возникновения данного рода выветриваний специалисты называют резкие и регулярные перепады температур. Если в дневное время поверхность минерала нагревается и расширяется, то ночью на фоне похолодания происходит обратный процесс сокращения структуры. В итоге имеет место растрескивание и дробление породы на мелкие частицы. Это своего рода деформирование, которое, опять же, носит постоянный характер, хоть и малозаметный. Особенно выражено физическое выветривание в холодных регионах, где часто бывают и заморозки. Дело в том, что скапливающаяся в структуре минерала влага в такие периоды твердеет и кристаллизуется, что повышает напряжение и закономерно приводит к более интенсивному растрескиванию. Способствуют разрушающей активности и вибрации рельефного покрова, которые часто проявляются в нестабильных с точки зрения тектонического устройства регионах.

Процесс химического выветривания

Явления такого характера также могут быть связаны с обширной группой факторов, причем не всегда способствующих именно разрушению. В зависимости от химической реакции, влияющей на структуру горной породы, могут наблюдаться и процессы деформации, и образование новых минералов. В обоих случаях будет происходить качественное изменение состава и структуры объекта. В списке непосредственных факторов, которые активизируют химическое выветривание, выделяют воду, кислород и углекислый газ. Например, водные ресурсы естественно выступают своего рода растворителем горной породы. Интенсивность взаимодействия воды и минерала зависит от химического состава жидкости. При этом и сами реакции могут быть разными. Так, на минералы магматических пород вода оказывает влияние посредством реакции гидролиза. Ее итогом может быть замена щелочных элементов на ионы водорода.

Биогенное или органическое выветривание

Как уже отмечалось, не меньшее воздействие на минералы могут оказывать и биологические факторы. К таким можно отнести деятельность растений, мелких грызунов и особенно микроорганизмов с грибками и бактериями. В комплексе эти факторы могут обеспечить и более серьезный разрушающий процесс, чем физические или химические факторы. Но это также зависит от конкретных условий местности, в которой залегает горная порода. Что такое выветривание биогенного характера на практике? Это может быть, например, активность живых организмов, дробящих минерал в слое почвы. Таким образом действует корневая система деревьев. А некоторые могут выступать также источником химической реакции, выделяя кислоты, которые в дальнейшем разлагают отдельные компоненты горного конгломерата.

Особенности радиационного выветривания

Одним из самых опасных является процесс радиационного воздействия. Он характеризуется высокой интенсивностью и длительностью, причем во многих случаях остановить его просто невозможно. Но тут же стоит выделить естественное солнечное излучение, которое входит в группу радиационных факторов, и техногенные процессы. Во втором случае выветривание пород происходит в результате человеческой деятельности. Классическим примером является работа полигонов, на которых хранятся токсически опасные отходы. Соответственно, ближайшие массивы с горными породами будут подвергаться и разрушающему воздействию, и активным факторам разложения.

Что такое кора выветривания

Разберемся и с этим вопросом. Процессы выветривания могут происходить постоянно или периодами. Но в обоих случаях поверхность, на которую действуют те или иные факторы качественной деформации, обретает характерный облик. Это и будет кора выветривания, которой свойственна рыхлость и обедненный химический состав.

Как правило, верхние слои таких пластов менее разложены и отличаются наличием металлических компонентов. Это могут быть, к примеру, гидроксиды кремния или же алюминия. Далее следует зона, в которой будут присутствовать гидроксиды железа, на образование которых оказывало влияние химическое выветривание с меньшей интенсивностью. В нижних пластах коры обычно залегают известняковые и гипсовые стяжения.

Продукты выветривания

Обычно в процессе выветривания остаются каменные обломки, частицы песка, щебень, глинистые фракции и каолин. При этом отсоединившиеся от основной породы элементы могут иметь различные размеры и формы - это уже зависит от конкретных условий и факторов выветривания. В некоторых случаях возможно и образование курума. Это массивные глыбы и валуны, сформированные из свежеобломанных вышеупомянутых фракций. Стандартные размеры курумов варьируются от 1 до 2 м, хотя бывают и экземпляры, значительно выходящие за эти рамки. Чаще всего образование таких глыб обеспечивает физическое выветривание, результатом которого может стать и создание каменного панциря с курумовым настилом.

Заключение

Выветривание происходит не только с разной степенью интенсивности, но и отличается стадиями реализации. Простейшим примером может быть физический процесс разрушения из-за температурного воздействия. Далее может подключиться и химическая реакция, в которой будет участвовать жидкость с активными элементами. Теперь стоит обратиться к вопросу о том, что такое выветривание органического характера. Отчасти это процесс биологического разрушения, который может закономерно повлечь и формирование новых пород. Соответственно, выветривание нельзя рассматривать только как разрушение существующего минерала. Даже если деформация завершится на этапе физического отделения некоторого массива частиц, это изменение может способствовать образованию новых минералов или конгломератов, что подтверждают своим существованием курумы.

В зоне гипергенеза , соответствующей приповерхностной биокостной части литосферы, выведенные на поверхность либо на дно морского бассейна горные породы стремятся прийти в равновесие с окружающей средой. Основными источниками энергии здесь являются солнечное тепло и в значительно меньшей степени внутренне тепло Земли. Важнейшую роль в гипергенных процессах играют органическое вещество и вода.

Верхней границей служит земная поверхность. Нижняя граница соответствует уровню затухания воздействия на горные породы фотосинтезирующей жизни, что сопровождается резким сокращением содержания кислорода и соответственно изменением химических условий среды (Eh, pH, угнетение процессов окисления, гидролиза, коллоидообразования). Обычная мощность зоны гипергенеза не превышает десятков метров, но иногда гипергенные процессы проявляются на глубинах в сотни и даже первые тысячи метров. Их проявление в глубинных зонах приурочено к зонам трещиноватости, карстовым полостям, поверхностям контактов пород, подземным горным выработкам, сохраняющим связь с земной поверхностью и служащим путями проникновения гипергенных агентов.

В зоне гипергенеза всегда присутствуют два принципиально различных комплекса минеральных образований: 1) материнские породы (субстрат) и 2) продукты гипергенеза.

В зависимости от условий процессы гипергенеза можно разделить на три группы:

поверхностный ( или наземный) гипергенез – комплекс явлений и процессов, происходящих непосредственно на поверхности суши или связанных с проникающими в толщи пород инфильтрационными водами;

глубинный ( или подземный) гипергенез - комплекс явлений и процессов, происходящих ниже земной поверхности и связанных с воздействием подземных вод, движущихся по водоносным горизонтам или восходящих по проницаемым зонам (заметим, что эти воды также имеют поверхностное происхождение);

подводный гипергенез ( или гальмиролиз) - комплекс явлений и процессов, происходящих на дне морей и океанов при взаимодействии морских вод с горными породами.

Формирование продуктов поверхностного гипергенеза связано с процессами выветривания .

Выветривание – это процесс изменения и разрушения минералов и горных пород на земной поверхности под воздействием физических, химических и органических факторов.

В зависимости от того, какие факторы обуславливают процессы преобразования пород, выветривание можно подразделить на физическое (или механическое) и на химическое. Биогенные процессы, очень широко проявленные в процессах выветривания, проявляются как в механическом, так и в химическом воздействии на минеральный субстрат. Механическое разрушение пород при биогенном выветривании осуществляется, например, корнями растений, расширяющими трещины, или роющими организмами (черви, муравьи, термины, суслики, кроты и др.). Биохимические процессы активно воздействуют на минеральное вещество как в процессе жизнедеятельности (например, лишайники извлекают минеральные вещества из минералов, что приводит к разрушению последних), так и поставляя химически активные соединения в процессе разложения (органические кислоты, возникающие при разложении опавшей листвы и пр.).

Взаимодействие минерального и органического вещества приводит к возникновению почвы.

Физическое выветривание

Физическое выветривание подразделяется на температурное и морозное.

Температурное выветривание – разрушение горных пород и минералов на поверхности Земли под влиянием колебаний температуры. Известно, что при нагревании и охлаждении твёрдые тела изменяют свой объём. Не являются исключением горные породы и минералы. В результате суточных колебаний температуры в массиве горных пород возникают напряжения двух типов.

Напряжения первого типа (называемые объёмно-градиентными) связаны с неравномерным нагреванием поверхностной и более глубоких частей массива; различие температур (и, соответственно, различное расширение) в этих частях массива приводят к образованию трещин, направленных параллельно его поверхности. Вследствие этого происходит шелушение и отслаивание пород, называемое десквамацией .

Десквамация в слоистой карбонатной породе (плато Лаго-Наки, Большой Кавказ)

Десквамация вулканических пород (вулканический массив Карад-Даг, Крым)

Второй тип напряжений в пределах объёма породы и минерала связан с различием коэффициентов теплового расширения-сжатия минералов. Напряжения этого типа приводят к раскалыванию до уровня минеральных зёрен и далее, по трещинам спайности, до образования частиц размером до сотых долей мм. Быстрее разрушаются темноокрашенные минералы и породы, а также крупнокристаллические полиминеральные породы с большими различиями коэффициентов расширения составляющих их минералов.

Так в процессе температурного выветривания массив пород разрушается с образованием обломочных пород различного размера – от щебня до алевритового материала. Суточные колебания температуры проявляются до глубины 1 м, что определяет максимальную мощность возникающих таким путём обломочных отложений.

Наиболее активно температурное выветривание протекает в пустынях и, в несколько меньшей степени, в нивальных областях и в высокогорных районах, не покрытых снегом. Этому способствует сочетание двух факторов: 1) резкие суточные колебания температуры, достигающие 50 о С и 2) обнажённость горных пород ввиду отсутствия растительного покрова и почвенного слоя.

Морозное выветривание – разрушение горных пород в результате периодического замерзания попадающей в трещины воды.

Попадая в трещины, в холодное время суток вода замерзает – превращается в лёд, объём которого, как известно, значительно выше, чем исходный объём воды. Кристаллизующийся лёд оказывает на стенки трещин весьма существенно давление, достигающее 1000 кг/см 3 и более, что значительно выше прочности большинства горных пород. Давление льда приводит к расширению трещин и раскалыванию пород на крупные обломки размером от десятков сантиметров до метров в диаметре. Отсутствие более мелкого материала обусловлено тем, что свободная вода не способна проникать в микротрещины.

Наиболее активно морозное выветривание протекает в холодных и умеренных областях с резкими суточными колебаниями температуры, а также в области развития вечной мерзлоты и в зоне деятельности ледников.

Образующиеся в ходе физического и химического выветривания продукты разрушения могут быть перемещены с места своего образования под действием водных потоков, ветра, движущихся ледников и других экзогенных факторов (процесс перемещения продуктов разрушения горных пород называется денудация ) или остаться на месте своего образования. Продукты выветривания, залегающие на месте своего образования, называются элювий . К элювию относят продукты выветривания, не смещённые за пределы площади развития материнских пород (субстата за счёт которого они образовались).

В результате физического выветривания образуются особые формы ландшафта. Если выветривание происходит в горной области, где имеются плоские, горизонтальные поверхности, то продукты выветривания накапливаются на них в виде глыб и более мелкого дресвяного материала. В результате создаются элювиальные россыпи и ландшафты беспорядочного нагромождения глыб, получившие название «каменных морей».

Характерным ландшафтом зон физического выветривания являются каменистые пустыни, или, как их называют в Сахаре, гаммады. Гаммады представляют собой нагромождения глыб и щебня, образующиеся за счёт выветривания горизонтально лежащих платов горных пород и выноса ветром пылеватых и песчаных продуктов их разрушения. Краю пластов часто расчленены на останцы конусовидной формы, понижения между которыми заполнены россыпями каменных глыб и щебнем.

Говоря о физическом выветривании необходимо подчеркнуть, что оно приводит к механической дезинтеграции пород и минералов, но не приводит к их химическому преобразованию .

Химическое выветривание

Химическое выветривание представляет собой процесс химического преобразования минералов и горных пород под воздействием воды, кислорода, углекислого газа, органических кислот, а также вследствие биогеохимических процессов.

Преобразование происходит вследствие реакций окисления и гидратации (например, преобразование пирита по схеме FeS 2 + mH 2 O + nO 2 – FeSO 4 - Fe 2 SO 4 – Fe(OH) 3 – Fe 2 O 3 . nH 2 O), растворения и гидролиза. Особое место занимают реакции гидролиза - ионного обмена между веществами и водой, приводящие к разрушению даже весьма устойчивых структур силикатов, сопровождающемуся их гидратацией и выносом элементов из кристаллической решётки. Примером такой реакции, может служить разрушение каркасной структуры полевых шпатов (самых распространённых в земной коре минералов) с образованием глинистых минералов и, далее, гиббсита:

K + CO 2 + H 2 O – Al 4 (OH) 8 + K 2 CO 3 + SiO 2 – Al О (OH) 3 + SiO 2 .

Необходимо отметить ещё одну функцию воды, без которой невозможно химическое преобразование пород: вода обеспечивает «доставку» агентов химического выветривания и вынос продуктов реакций.

Транспортировка веществ происходит почвенно-грунтовыми водами в виде истинных и коллоидных растворов.

Важное значение в процессах химического выветривания имеют органические кислоты, активно способствующие разложению минералов. Процессы химического выветривания протекают ниже почвенного слоя, просачиваясь через который воды обогащаются органическими соединениями.

Необходимыми условиями глубоко химического выветривания являются:

  • климат, при котором достигается сочетание высоких температур и влажности (гумидный тропический);
  • обилие и характер растительности (при её разложении образуются органические кислоты, активно разрушающие минералы);
  • выровненный рельеф, обеспечивающий неподвижность продуктов разрушения;
  • продолжительность выветривания.

Важно подчеркнуть роль ландшафтных условий. В гумидных ландшафтах развита лесная растительность, обладающая огромной биомассой и разлагающаяся почве микроорганизмами с образованием органических кислот, поэтому почвенные воды гумидных ландшафтов обладают кислой реакцией и активно воздействует на минералы исходных горных пород; в таких условиях выветривание протекает под воздействием постоянного промывания горных пород кислыми растворами.

В аридных ландшафтах, отличающихся недостаточной увлажнённостью, распространена травянистая растительность. Её биомасса в десятки раз меньше биомассы лесов. Кроме того, почвенная микрофлора перерабатывает растительные остатки с образованием высокополимеризованных органических соединений, которые не обладают агрессивными свойствами по отношению к минералам. Почвенные воды имеют нейтральную или слабощелочную реакцию, поэтому интенсивного промывания выветривающейся толщи агрессивными возами не происходит, и в ней постепенно сохраняются относительно легкорастворимые соединения.

Процессы химического разложения приводят к разрушению кристаллических решёток минералов, даже весьма устойчивых, высвобождению из них химических элементов. Так выветривание гранитов может завершиться формированием за сёт слагающих их минералов толщи глин, обогащённых водными окислами алюминия.

Коры выветривания

Геологические тела, сложенные элювием, то есть продуктами глубокого поверхностного физического, химического, биохимического преобразования горных пород, оставшихся на месте своего образования, объединяют понятием кора выветривания .

Кору выветривания магматических и метаморфических горных пород называют ортоэлювием . Эти породы формировались в условиях, резко отличных от земной поверхности, и поэтому они изменяются наиболее сильно. Соответственно, развивающиеся по ним коры выветривания резко отличаются от материнской породы.

Кора выветривания морских осадочных пород называется параэлювием . Изменение таких пород, по сравнению с магматическими и метаморфическими, часто менее значительно. Поэтому кора выветривания не всегда резко отличается от материнских пород (например, при выветривании глин).

Элювий континентальных отложений обозначается термином неоэлювий . Материнские породы, за счёт которых происходит формирование такого элювия, сами являются переотложенными продуктами выветривания, и в поверхностных условиях уже слабо изменяются; в силу этого неоэлювий часто выражен неотчётливо. Нередко выветривание захватывает только почвенную толщу и коры выветривания не образуется.

Типичным компонентами кор выветривания служат продукты дезинтеграции субстрата, глинистый элювий и латериты .

Продукты дезинтеграции представляют собой подвергшиеся физическому выветриванию (растрескиванию, дроблению) породы субстрата, практически не изменившие химического состава. Примером могут служить глыбовый и щебнистый элювий на гранитных породах в аридных и субаридных областях, доломитовая мука на доломитах и пр. Иногда, в условиях жаркого влажного климата, поверхностная дезинтеграция сопровождается начальным химическим выветриванием – гидролизом, частичным выщелачиванием наиболее подвижных компонентов (например, щебнистые элювиальные суглинки в Центральном Казахстане, образованные за счёт гранитов).

Глинистый элювий – глины, сохранившие реликтовую структуру материнских пород. Глинистый элювий обычно слагает основную массу коры выветривания и подразделяется по минеральному составу (гидрослюдистый, монтмориллонитовый, каолинитовый). Характерен для областей с гумидным климатом.

Латеритом (от лат. «later» - кирпич ) называют красноцветные железистые или железисто-глинозёмистые элювиальные образования, состоящие преимущественно из минералов гидроокислов и оксидов железа, алюминия и титана с примесью каолинита. они во влажных тропических и субтропических областях в условиях интенсивного выноса кремнезёма (SiO 2) и оснований CaО, Na 2 О, K 2 O, MgO и накоплением окислов алюминия (гиббсит - AlО(OH) 3), железа (гематит – Fe 2 O 3 , гётит - FeOOH) и титана в остаточных породах. Образуются латериты за счёт материнских пород, богатых алюминием (например, гранитов или сиенитов). Часто на поверхности латеритов формируется кираса – порода, состоящая из обломков латерита и конкреционных образований, сцементированных алюможелезистым цементом.

Разновидностью коры выветривания являются рудные шляпы , формирующиеся при химическом выветривании пород, богатых рудными минералами, обычно сульфидами или другими легкоокисляющимися соединениями. На поверхности рудные шляпы обычно сложены кавернозными железняками, образующими глыбовые и щебневые развалы, выделяющиеся темно- и светло-красной, охристой и буровато-красной окраской, связанной с окислами и гидроокислами железа (гётит, гидрогётит, гидрогематит и др.).

Формирование шляп связано с воздействием воды на рудные минералы: происходит вынос грунтовыми водами легкорастворимых соединений, а в остатке накапливается нерастворимая минеральная масса, образующая шляпу. Так при разложении железосодержащих сульфидных руд часть железа выносится в виде сульфатов, но большая его доля, пройдя через сульфатную стадию, окисляется до гидроксидов и накапливается близ выхода рудных тел на земную поверхность, формируя железную шляпу .

По составу конечных продуктов рудные шляпы подразделяются на оксидные и сульфатные. Первые характерны для жарких и умеренных гумидных областей; вторые – широко развиты в аридных и зонах и зоне вечной мерзлоты.

Оксидные шляпы характеризуются резким преобладанием среди новообразованных рудных минералов гидроокислов железа, а в глинистых фракциях галлуазит-каолинитовой ассоциации; они имеют относительно большую мощность, как правило, многие десятки метров. Сульфатные шляпы отличаются присутствием зоны сульфатов железа и обладают обычно небольшой мощностью (метры, до первых десятков метров).

Поверхностному выветриванию могут подвергаться и залежи нерудных полезных ископаемых. В частности, при поверхностном растворении соляных толщ возникает гипсовая шляпа, или кепрок, представляющая покрышку на залежах солей и состоящая из смеси гипса с глиной, песком и карбонатами. При разложении гипсов формируется шляпа, в состав которой входят вторичный гипс в смеси с песчано-глинистым материалом.

Глубина распространения рудных шляп ниже земной поверхности обычно ограничивается уровнем грунтовых вод и достигает десятков и сотен метров.

Процессы химического выветривания протекают стадийно, что наглядно демонстрируется приведённой выше последовательностью преобразования пирита и полевого шпата. Эта стадийность отчётливо проявляется в развитии и строении и развитии кор выветривания.

Б.Б. Полыновым были выделены стадии развития коры выветривания , наиболее проявленные в ортоэлювии.

Первая стадия – обломочная – характеризуется физическим выветриванием материнских пород, химических преобразований в пределах коры не происходит. Дезинтеграция горных пород, образование в них трещин обуславливает, с одной стороны, их хорошую водопроницаемость, а с другой – резко увеличивает реакционную поверхность выветривающихся пород. Это создаёт условия для активизации разнообразных физико-химических, химических и биогеохимических процессов, сопутствующих химическому выветриванию.

Вторая стадия – сиаллитная, или обызвесткованная знаменуемся началом процесса химического выветривания, сопровождающимся извлечением из кристаллохимических структур силикатов щелочных и щелочноземельных элементов (главным образом кальция и натрия). При этом за счёт осаждения выносимого кальция в выветривающейся породе образуются плёнки, налёты и конкреции кальцита («обызвесткованный элювий»). Силикаты на этой стадии начинают гидратироваться и подвергаться гидролизу, при этом гидролиз силикатов со сложной кристаллохимической структурой сопровождается не полным их разрушением, а распадом на отдельные «блоки», из которых затем возникают новые минералы – происходит трансформация в глинистые минералы (гидрослюды, монтмориллонит, бейделлит и др.). За пределы коры выветривания водами выносятся лишь наиболее подвижные элементы – хлор и частично сера.

Третья стадия – кислая сиаллитная – сопровождается дальнейшим, уже весьма значительным, преобразованием минералов - за счёт материнских пород образуется «сиаллитный элювий», получивший название по преобладающим химическим элементам Si и Al. Для этой стадии характерны богатые алюминием глины - каолинит, галлуазит, и железосодержащие оксиды и гидроксиды - лимонит и пр. Продукты выветривания лишаются оснований (CaО, Na 2 О, K 2 O, MgO), выносимых из коры фильтрующимися сквозь неё водами.

Четвёртая стадия – аллитная – проявлена в интенсивном вносе из продуктов выветривания не только щелочных и щелочноземельных элементов, но и кремнезёма силикатов, вследствие чего в пределах коры остаются наименее подвижные соединения - водные окислы алюминия и железа, образующие латериты . При наличии определённого состава исходных пород конечные продукты выветривания обогащаются оксидами алюминия (отсюда и название аллитной стадии). Так в условиях жаркого климата и высокой влажности преобразование полевых шпатов приводит не только до уровня каолинитовых глин, но и далее, приводя к формированию бокситов (от фр. «beauxite», по названию местности Beaux на юге Франции ) - алюминиевой руда, состоящая из гидроксидов алюминия (до 40-60%), оксидов железа и кремния.

Приведённая выше последовательность преобразования исходных пород является. Конечно, обобщённой идеальной схемой, иллюстрирующей общую направленность процесса выветривания.

Процесс выветривания может прерваться на любой стадии в связи с неблагоприятным изменением физико-географических условий (например, в связи с аридизацией климата) или под воздействием геологических событий (например, воздымание территории, проводящее к эрозии коры выветривания, либо наоборот, опусканием и захоронения коры выветривания под осадками). Следовательно, очень древняя кора выветривания может быть неполно развитой, а геологически более молодая кора, развивавшаяся на протяжении более длительного времени, может оказаться более хорошо сформированной.

Состав конечных продуктов химического выветривания определяется как степенью эволюции коры, так и составом материнских пород. Для кор, развивающихся по ультраосновным породам, характерно обогащение железом, содержащимся в большом количестве в материнских породах. Иногда такие коры используются в качестве железной руды (например, месторождения на о. Куба, где мощность коры достигает 25 м). Другим элементом, способным образовывать промышленные концентрации является никель, накапливающийся в нижних частях коры выветривания за счёт осаждения из фильтрующихся водных растров (обогащённых в верхних горизонтах коры довольно подвижным никелем).

При этом, вне зависимости от различий состава субстрата, существует определённая закономерность в подвижности элементов (следовательно, и последовательности их выноса из коры), позволившая выделить ряды миграции элементов в корах выветривания.

В строении развитых кор выветривания выделяются ряд горизонтов, состав которых соответствует разным последовательным стадиям выветривания субстата. В совокупности эти горизонты образуют профиль коры выветривания. Нижние горизонты, залегающие непосредственно на материнских породах, соответствуют обломочной стадии, вверх степень выветренности повышается.

Например, кора выветривания на гранитах имеет следующее строение профиля (снизу вверх):

1 - горизонт щебенчатой, или обломочной, коры выветривания, образованный дезинтегрированным в ходе физического выветривания гранитом;

2 - гидрослюдистый горизонт, в породах которого, представляющих собой слабосцементированную массу, прослеживается структура исходного граниты, но значительная часть щелочей и щелочноземельных элементов из минералов вынесена, и большая часть полевых шпатов замещена агрегатом тонкочешуйчатых гидрослюд;

3 - коалинитовый горизонт, представляющий собой светлую глинистую массу с отдельными участками рыхлого щебнистого материала и красно-бурые пятна от скопления гидрооксидов железа из этого горизонта полностью удалены все одно и двухвалентные катионы, гидрослюды здесь замещены коалинитом.

При выветривании горных пород иного состава горизонты профиля слагаются другими минералами. Каждый тип горных пород характеризуется своими особенностями состава и строения коры выветривания.

Выветривание горных пород – это процесс их разрушения вблизи поверхности в течение длительного периода времени. Выветривание происходит в результате воздействия различных факторов и принято различать три его типа: физическое или механическое, химическое выветривание и биологическое.

Выветривание горных пород физическое

Физическое выветривание – это разрушение горных пород под действием разницы температур. Как оно происходит? Порода трескается, когда её частицы, поочередно охлаждаясь и нагреваясь, теряют прочные связи друг с другом.

В трещины попадает вода и лед и, со временем, они увеличиваются. Водой, а также ветром разрушенный материал уносится из трещины и порода разрушается. Если горная порода слоистая и один слой податливее другого, то, разумеется, в первую очередь разрушается именно он.

Выветривание горных пород химическое

Горные породы также разрушаются в результате их растворения и выщелачивания. Растворяет породу попадающая в её трещины вода, процесс это медленный, но непрерывный. Причем, чем шире и глубже трещина, тем большая поверхность породы подвергается растворению.

Химическому растворению больше всего подвержены карбонатные горные породы – известняки, доломиты, мрамор, гипс, каменная соль

Выветривание горных пород биологическое

Биологическим выветриванием называют разрушение горных пород растениями и мельчайшими живыми организмами – бактериями. Разрушает горные породы не только корневая система крупных растений, но и, например, растущие на поверхности скал лишайники.

Отмирая, частицы растений попадают в воду и делают её более агрессивной химически по отношению к поверхности горной породы. Порода начинает более интенсивно растворяться и разрушаться. Можно сказать, что биологическое выветривание способствует химическому и физическому.

Подверженные выветриванию всех типов верхние слои горных пород называются корой выветривания.

5.В зависимости от происхождения различают минералы первич­ные и вторичные.

К первичным относятся минералы, образовавшиеся впервые в земной коре или на ее поверхности в процессе кристаллизации магмы. К первичным наиболее распространенным минералам относятся кварц, полевой шпат, слюда, из которых состоят гра­нит или сера в кратерах вулканов.

Вторичные минералы образовались при обычных условиях из продуктов разрушения первичных минералов вследствие вывет­ривания, при осаждении и кристаллизации солей из водных рас­творов или в результате жизнедеятельности живых организмов. Это - кухонная соль, гипс, сильвин, бурый железняк и другие.

6.Гранулометрический (механический) состав почв и его значение

Гранулометри́ческий соста́в (механический состав, почвенная текстура) - относительное содержание в почве, горной породе или искусственной смеси частиц различных размеров независимо от их химического или минералогического состава. Гранулометрический состав является важным физическим параметром, от которого зависят многие аспекты существования и функционирования почвы, в том числе плодородие.

Механические элементы – твёрдые частицы, склеенные между собой в почвенные агрегаты. Твёрдая фаза - это всегда смесь частиц разного размера, эти частицы характеризуются химической прочностью связи. Между составными компонентами гранулами или частицами не разрушаются при механическом и химическом воздействии. Все элементы в элементарной почвенной частице находятся в химическом взаимодействии в микро и макро агрегатах. Элементарные почвенные частицы склеиваются органическим веществом и самыми тонкими коллоидами.

Шкала Качинского

Граничные значения, мм Название фракции

до 0,000001 Истинные растворы

0,000001-0,0001 Коллоиды

0,0001-0,0005 Тонкий ил

0,0005-0,001 Грубый ил

0,001-0,005 Мелкая пыль

0,005-0,01 Средняя пыль

0,01-0,05 Крупная пыль

0,05-0,25 Тонкий песок

0,25-0,5 Средний песок

0,5-1 Крупный песок

1-3 Гравий

больше 3 Каменистая часть почвы

Гранулометрический состав определяет многие физические свойства и водно-воздушный режим почв, а также химические, физико-химические и биологические свойства.

Меньший диаметр частиц означает большую удельную поверхность, а это, в свою очередь - большие величины ёмкости катионного обмена, водоудерживающей способности, лучшую агрегированность, но меньшую прочность. Тяжёлые почвы могут иметь проблемы с воздухосодержанием, лёгкие - с водным режимом.

Разные фракции обычно представлены различными минералами. Так, в крупных преобладает кварц, в мелких - каолинит, монтмориллонит. По фракциям различается способность образовывать с гумусом органоминеральные соединения.

7.. Факторы почвообразования (климат, рельеф, почвообразующие породы, растительность и живые организмы, время, деятельность человека), их роль в формировании почв. Климат формируется под влиянием космических факторов и геосферных. Он оказывает многостороннее влияние на биосферу, процессы почвообразования, свойства почв и почвенного покрова. Влияние климата на почвообразование проявляется как непосредственно, обусловливая водно- воздушный, тепловой, биологический, геохимический режимы почв, так и косвенно через другие компоненты биосферы: атмосферу, гидросферу, почвообразующие породы, рельеф, растительный, животный мир и хозяйственную деятельность человека. С климатом связана широтная зональность биосферы и вертикальная поясность в горах. Для характеристики обеспеченности влагой наибольшее распространение получил коэффициент увлажнения Высоцкого-Иванова, он рассчитывается как отношение среднемноголетнего количества осадков к испаряемости. Рельеф – это совокупность форм земной поверхности разных масштабов. Рельеф играет большую роль в процессах функционирования биосферы и в почвообразовании. Мега- и макрорельефы участвуют в формировании воздушных масс и перераспределении тепла и влаги по земной поверхности, определяя климатические и погодные условия, а через них – макроэкосистемы с характерным почвенным покровом. Мезо- и микроформы рельефа перераспределяют тепло и влагу в пределах склонов, повышений и понижений. Они определяют особенности микроклимата и глубину залегания с характерными особенностями почвенного покрова. Определяют размер и форму ЭПА, образующих почвенные комбинации. Профиль любой почвы заканчивается почвообразующей породой. Почвы наследуют от почвообразующей породы гранулометрический состав, минералогический и химический составы, ряд физических свойств. На породах, обогащённых элементами питания и основаниями, как правило, образуются плодородные почвы и, наоборот, на бедных породах формируются почвы с низким плодородием. Почвы, унаследовавшие негативные, с агрономической точки зрения, свойства, такие, как каменистость, высокая плотность, наличие водорастворимых солей и др., требуют специальных затрат на их освоение и улучшение. Почвообразующие породы могут в корне изменять скорость и направление почвообразовательных процессов, что приводит к формированию азональных типов почв, например, дерново-карбонатные почвы в таёжно- лесной зоне среди подзолистых. Глубина залегания грунтовых вод определяется рельефом и степенью водопроницаемости почвообразующих пород. Под воздействием почвенно- грунтовых вод может происходить заболачивание, оглеение, вынос и привнос растворимых продуктов почвообразования, поднятие и опускание солей при колебании уровня грунтовых вод и капиллярной каймы и др. За время существования жизни на Земле живое вещество преобразовало огромное количество солнечной энергии в химическую и механическую работу выветривания. Часть энергии трансформировалась в потенциальную и длительное время в виде громадных запасов орг. и орг.-минер. веществ (нефть, уголь, торф, гумус и др.) сохраняется в земной коре. Живое вещество существенно изменило хим. состав атмосферы, литосферы и гидросферы. Благодаря живому веществу сформировалась почва и главное её свойство – плодородие. В основе почвообразования лежит биологический круговорот веществ, сущность которого заключается в том, что химические элементы литосферы, вода и элементы атмосферы поглощаются живыми организмами, перегруппировываются и возвращаются в почвы, но уже в новом качестве и других количествах. Абсолютный возраст – время, прошедшее с начала формирования почвы до настоящего момента. Относительный возраст характеризует зрелость – степень развития конкретной почвы, соответствие её профиля факторам почвообразования. В процессе почвообразования каждая почва проходит ряд последовательных стадий. На первой стадии начальное почвообразование, сменяется стадией развития (формируется зрелый почв. профиль), при этом достигается стадия квази-равновесия или «климаксное» состояние. В последней стадии долгое время, сменяясь стадией эволюции (сопоставима со стадией развития и ведёт к новому квази-равновесию). 66. В чём сущность почвообразовательного процесса? Почвообразовательный процесс – это совокупность явлений превращения и передвижения веществ и энергии, протекающих в почвенной толще. Совокупность процессов можно разделить на три группы: 1. Процессы обмена веществами и энергией между почвой и другими природными телами (поступление в почву и вынос из неё). 2. Процессы превращения веществ и энергии, происходящие в почвенной толще. 3.Процессы передвижения и аккумуляции веществ и энергии в почвенной толще. Характерная черта – цикличность. Наиболее выражен годичный цикл. Тенденция обратимости и противоположной направленности. Определённая совокупность микропроцессов образует частные (или элементарные) почвообр. процессы. Более 60 естественных ЭПП, объединённых в 7 групп. 1. Биогенно- аккумулятивные ЭПП (подстилкообразование, гумусообразование, торфообразование, детритообразование); 2.Гидрогенно-аккумулятивные ЭПП (засоление, окарбоначивание, оруденение); 3. Метаморфические ЭПП (сиаллизация (оглинение), монтмориллонитизация, ферралитизация- каолинизация-ферсиаллитизация-бокситизация-ферратизация, оглеение, оструктуривание, слитизация); 4. Элювиальные ЭПП (выщелачивание, оподзоливание, лессирование, псевдооподзоливание-псевдооглеение- отбеливание-ферролиз-- элювиально-глеевый процесс-- Al-Fe-гумусовый процесс, осолодение, коркообразование); 5. Иллювиально-аккумулятивные ЭПП (глинисто-иллювиальный-- алюмогумусо-иллювиальный- железистогумусо-иллювиальный-иллювиально-гумусовый-иллювиально- карбонатный); 6. Педотурбационные ЭПП (самомульчирование, криотурбация, пучение, биотурбация, ветровальная педотурбация); 7. Деструктивные ЭПП (эрозия, дефляция (ветровая эрозия), погребение); 8. Агрогенные и техногенные ЭПП (освоение, агрогенное гумусонакопление, мульчирование, окультуривание, агротурбация); 9. Мелиоративные ЭПП (пескование, агрогенное оструктуривание, рекультивация); 10. Деструктивные агро- и техногенные ЭПП (ускоренная эрозия, ирригационная эрозия, дефляция, стаскивание, вторичное засоление, вторичное оглеение. Дегумификация, выпахивание, обесструктуривание, переуплотнение, техногенное загрязнение, агрогенное загрязнение, почвоутомление).

8. Большую роль в питании растений и в превращении внесенных в почву удобрений играет ее поглотительная способность. Под поглотительной способностью понимается способность почвы поглощать различные вещества из раствора, проходящего через нее, и удерживать их. Основы современных представлений о поглотительной способности почвы были заложены работами академика К. К. Гедройца. Он различал пять видов поглощения в почве.

механическую, физическую, физико-химическую, химическую и биологическую. 1. Механическая поглотительная способность – это свойство почвы поглощать твёрдые частицы, поступающие с водой или воздухом, размеры которых превышают размеры почвенных пор. 2. Физическая (молекулярная адсорбция) – это свойство почвы изменять концентрацию молекул различных веществ на поверхности твёрдых частиц за счёт физического взаимодействия молекул. При этом меняется величина поверхности и поверхностная энергия. Происходит положительная физическая адсорбция орг. соединений и отрицательная минер. и некоторых орг. соединений. 3. Химическая (хемосорбция) обусловлена образованием труднорастворимых соединений, выпадающих в осадок из почв. раствора. 4. Биологическая обусловлена поглощением элементов питания и кислорода почвенного воздуха корнями растений и микроорганизмами. Она характеризуется большой избирательностью поглощения. 5. Физико-химическая обусловлена наличием в составе почв ППК, представленного почвенными коллоидами. ППК обладает способностью поглощать и обменивать катионы и анионы, находящиеся на поверхности кол. частиц, на эквивалентное количество ионов почв. раствора. Эта способность обусловливает физико-хим. свойства почв, такие как кислотность, щелочность, буферная способность.