Какой тип разряда в газоразрядных лампах. Разрядные лампы высокого давления: удобно и надежно. Принцип действия газоразрядных ламп высокого давления

Встретить газоразрядные лампы высокого давления и низкого в разных интерпретациях можно совершенно неожиданно и сразу в нескольких сферах жизни современного человека. Они освещают улицу в виде автомобильных фар и фонарей, создают комфорт и уют, являясь частью домашнего освещения, и это далеко не все.

Конструктивные особенности изделий

Под газоразрядными лампами следует понимать альтернативный традиционным источникам света компактный прибор, главная особенность которого - излучение света в диапазоне, который человек способен охватить взглядом. Чтобы понять принцип работы устройства, нужно разобраться с его конструктивными особенностями.

Основа изделия - это стеклянная колба. В нее под определенным давлением закачивают пары металла, но чаще газ. Дополнительные элементы - электроды по краям стеклянной колбы.

Понимая особенности строения изделия, можно представить себе принцип его работы. Построен он на действии электрического разряда, который пропускает через себя стеклянная колба с электродами. Ядро колбы - главный электрод. Под ним работает токоограничительный резистор. В то время как электрический разряд проходит через колбу, она начинает излучать свет.


Кроме перечисленных выше электродов и колбы, лампа имеет цоколь. Именно он позволяет расширить сферу использования изделия. Его можно вкручивать в осветительные приборы разного назначения.

Обратите внимание! Чаще всего такие устройства применяют в создании именно уличного освещения. Ими оснащают фонари, а также фары в автомобилях, как уже было отмечено выше.

Разновидности изделий

Выделяют разные виды газоразрядных ламп в зависимости от типа свечения, величины давления.

Если сравнивать потоки светового излучения, создаваемые изделиями, то газоразрядные лампы можно разделить на:

  • люминесцентные;
  • газосветные;
  • электродосветные.

Первые отличаются светом, поступающим наружу за счет слоя люминофора, которым покрыта лампа, активирующегося при газовом разряде.

Газосветные светят за счет света самого газового разряда, а электродосветные освещают с помощью свечения электродов под воздействием газового разряда.

По величине давления изделия можно разделить на лампы высокого и низкого давления.

Первые могут дополнительно разделяться на дуговые ртутные лампы (ДРЛ), а также на дуговые ксеноновые трубчатые (ДКсТ), дуговые ртутные с йодидами (ДРИ) и дуговые натриевые трубчатые (ДНат). Главное их отличие - функционирование без пускорегулирующего устройства. Именно такие лампы чаще всего освещают улицы, дома, автомобили и стенды наружной рекламы.

Стоит обратить внимание на тот факт, что лампы высокого давления газоразрядного типа используются чаще всех остальных. Натриевые и ртутные модели просто незаменимы в создании ярких баннеров рекламы, освещающих улицы в ночное время. Жилые и офисные помещения с помощью таких ламп освещают нечасто.

А вот что такое газоразрядные лампы с низким давлением? Они классифицируются на ЛЛ и КЛЛ. Эти лампочки с успехом выполняют функции ранее используемых ламп накаливания. Именно их удобнее и практичнее всего использовать для создания не только уличного, но и домашнего освещения.

Среди ламп низкого давления наиболее популярными считаются люминесцентные. Такие лампы для уличного освещения подходят как нельзя лучше. Вкручивая их в фонари, можно добиться высокой эффективности работы за счет мощного преобразования электроэнергии в световую.

Как построена работа лампочки

Рассмотрим принцип работы газоразрядных ламп подробнее, основываясь на их конструктивных особенностях.

Начнем с того, что лампа газоразрядная генерирует свет за счет создаваемого в теле стеклянной колбы электрического разряда. Газ, закачиваемый в колбу под давлением, лежит в основе освещения. Для создания уличного освещения чаще всего применяют инертные газы:

  • аргон;
  • неон;
  • ксенон и другие.

Практикуется использование и смесей газов в разных пропорциях. Часто в состав включают натрий или ртуть. На основании их включения натриевая газоразрядная лампа или ртутная и носят свои названия.

Обратите внимание! Ртутные изделия в наши дни более актуальны, чем натриевые. Они используются для создания уличного и домашнего освещения.

Оба варианта лампочек могут считаться металлогалогенными источниками света. Сразу после генерации электрического поля при подаче питания газ и свободные электроны в колбе ионизируются. Это приводит к контакту вращающихся на верхних уровнях атомов электронов с остальными электронами атомов металла, что в свою очередь вызывает их переход к внешним орбиталям и конечному появлению энергии - свечению.

Стоит помнить о том, что свечение, получаемое таким образом, может быть самым разным, начиная от ультрафиолетового и заканчивая инфракрасным. Для экспериментов со свечением используют цветную люминесцентную краску для обработки внутренней части колбы. Цветные стенки колбы помогают ультрафиолетовому излучению приобрести видимый цветной свет.

Плюсы и минусы изделий

Рассмотрим достоинства и недостатки газоразрядных ламп с анализом их основных характеристик.

К основным преимуществам изделий можно отнести следующие моменты:

  1. Лампочки отличаются высоким уровнем светоотдачи даже при условии использования плафонов из толстого стекла.
  2. Лампы достаточно практичны, особенно, если сравнивать их с обычными лампочками накаливания. В среднем изделие прослужит от 10 тысяч часов, поэтому является особенно незаменимым в создании качественного и долговечного уличного освещения.
  3. Изделия демонстрируют повышенный уровень устойчивости, особенно ртутная газоразрядная лампа в условиях сложного климата. Их можно использовать для уличного освещения до первых заморозков в комплекте с обычными плафонами и в зимнее время при условии контакта со специальными фарами и фонарями.
  4. Стоимость изделий доступна и приемлема.
  5. Лампочки с таким устройством не нуждаются в дорогих комплектующих и могут работать без дополнительной осветительной затратной аппаратуры.
  6. Схема подключения изделий проста и понятна, поэтому с монтажом справится каждый своими руками.

Достоинства рассмотрели, теперь назовем минусы. Их немного, но о них также нужно знать:

  1. Газоразрядные лампы низкого давления и высокого давления не отличаются идеальной цветопередачей. Все дело в спектре лучей, весьма ограниченном в этих изделиях. Под светом таких лампочек достаточно непросто рассмотреть цвета предметов, поэтому в уличном и автомобильном освещении они наиболее приемлемы.
  2. Работают изделия исключительно при условии наличия переменного тока.
  3. Для активации лампочек потребуется балластный дроссель.
  4. Чтобы изделие заработало, кроме тока ему потребуется увеличенное время для разогрева.
  5. Лампочки сложно назвать полностью безопасными из-за возможного содержания в них паров ртути.
  6. Световой поток, излучаемый лампочками, имеет неприятную особенность - повышенный уровень пульсации.

Что касается установки, то она не представляет каких-либо сложностей, как уже было отмечено. Процесс аналогичен монтажу стандартных лампочек накаливания.

Область применения

За счет конструктивных особенностей и уникального принципа работы, а отчасти и благодаря доступности таких комплектующих, как конденсаторы для газоразрядных ламп, изделия сегодня более чем востребованы, причем в самых разных сферах жизнедеятельности человека.

Чаще всего свет от изделий можно увидеть:

  • на улицах городов и сел исходящим от фонарей;
  • в магазинах и производственных зданиях, торговых центрах и офисах, вокзалах и аэропортах;
  • на пешеходных дорогах и в подсветке парков, скверов, фонтанов;
  • на рекламных щитах;
  • на фасадах зданий кинотеатров, концерт-холлов в комплекте с дополнительным оборудованием, способным увеличивать эффект от свечения.

Совершенно отдельным пунктом стоит отметить использование такого рода лампы для авто в фарах. Чаще всего здесь применяются неоновые лампы с высоким уровнем интенсивности света. Некоторые современные марки ТС уже оснащены фарами, заполненными ксеноном и металлогалоидными солями.

Обратите внимание на маркировку ламп для автомобильных фар. Так, например, D1R и D1S - это первое поколение газоразрядных лам, связанных с модулем зажигания.

Лампы второго поколения имеют маркировку D2R и D2S, где R - это изделие для рефлекторной оптической схемы, S - прожекторной.

Нельзя не упомянуть и о роли лампочек такого типа в современной фотосъемке. Постановка света для создания качественной фотографии позволяет ощутить главные преимущества источника.

Импульсные газоразрядные лампы для освещения позволяют фотографировать с постоянным контролем светового потока. Они более яркие, экономичные, имеют компактные размеры. Из минусов использования изделий в этой сфере стоит отметить неспособность визуального контроля светотени, образуемой от источника света такого рода на фотографическом объекте в процессе.

Что нужно знать об индикаторных видах ламп

В качестве альтернативы малогабаритным лампам накаливания использование газоразрядных индикаторных ламп (лампы ин) выглядит более чем оправдано. Такие лампы работают за счет свечения закачанного между электродами газа, помещенного в стеклянную колбу. Какого цвета газ использовали для наполнения колбы, такого цвета получится конечное свечение.

Самые популярные линейные газоразрядные индикаторы - на основе неона. Конструкции можно встретить в елочных гирляндах, не редкость и светильник с наполнением такого рода -лампочкой газоразрядного типа миниатюрных размеров.

Газоразрядные индикаторы отличаются практичностью и экономичностью работы, особенно по сравнению с обычными лампочками. Они имеют невысокий уровень внутреннего сопротивления. Одиночные варианты чаще всего используют для подсвечивания надписей на стекле или пластике, также индикаторы подходят для подсветки символических пиктограмм.

Важно! Газоразрядные индикаторные лампы могут воспроизводить как битовую информацию, так и десятичные цифры.

В заключение отметим, что невозможно искусственно увеличить значение использования газоразрядных ламп в жизни современного человека. Изделия действительно востребованы и в некотором роде даже незаменимы. Сколько еще применений сможет им найти человек в ближайшем будущем? Время покажет.

Области применения

Благодаря линейчатому спектру излучения газоразрядные лампы первоначально применялись лишь в специальных случаях, когда получение заданного спектрального состава излучения являлось фактором более важным, чем значение световой отдачи. Возникла широкая номенклатура , предназначенных для применения в научно-исследовательской аппаратуре, которые объединяют под одним общим названием - спектральные лампы.

Рисунок 1. Спектральные лампы с парами натрия и магния

Возможность создания интенсивного ультрафиолетового излучения, отличающегося высокими химической активностью и биологическим действием, привела к использованию газоразрядных ламп в химической и полиграфической промышленности, а также в медицине.

Короткая дуга в газе или парах металла при сверхвысоком давлении отличается высокой яркостью, что позволило в настоящее время отказаться от открытой угольной дуги в прожекторной технике.

Применение люминофоров, позволившее получать газоразрядные лампы с непрерывным спектром излучения в видимой области, определило возможность внедрения газоразрядных ламп в осветительные установки и вытеснение из ряда областей ламп накаливания.

Особенности изотермической плазмы, обеспечивающей получение спектра излучения, близкого к излучению тепловых источников, при температурах, недоступных в лампах накаливания, привели к разработке сверхмощных осветительных ламп со спектром, практически совпадающим с солнечным.

Практическая безынерционность газового разряда позволила применить газоразрядные лампы в фототелеграфе и вычислительной технике, а также создать импульсные лампы, концентрирующие в кратковременном световом импульсе огромную световую энергию.

Видео 1. Импульсные лампы

Требования снижения расхода электроэнергии во всех областях народного хозяйства расширяют применение экономичных газоразрядных ламп, объем выпуска которых непрерывно растет.

Лампы тлеющего разряда

Как известно, нормальный тлеющий разряд возникает при малых плотностях тока. Если при этом расстояние между катодом и анодом настолько мало, что в его пределах не может разместиться столб разряда, то имеют место катодное свечение и отрицательное тлеющее свечение, покрывающие поверхность катода. Расход мощности в лампе тлеющего разряда весьма мал, так как мал ток, а напряжение определяется лишь катодным падением. Излучаемый лампой световой поток незначителен, однако совершенно достаточен для того, чтобы зажигание лампы было заметным, особенно если разряд происходит в газе, дающем цветное излучение, например в неоне (длина волны 600 нм, красный цвет излучения). Такие лампы различной конструкции широко используют в качестве индикаторов. Так называемые цифровые лампы являлись ранее составной частью многих автоматических устройств с цифровыми указателями.

Рисунок 3. Лампа тлеющего разряда предназначенная для индикации цифр

При длинном газоразрядном промежутке с расстоянием между электродами значительно большим, чем прикатодная область, основное излучение разряда сосредотачивается в столбе разряда, который при тлеющем разряде отличается от столба при дуговом разряде лишь меньшей плотностью тока. Излучение такого столба может иметь высокую световую отдачу при большой длине. Высокое значение катодного падения напряжения в тлеющем разряде обусловило разработку ламп на высокое напряжение питания, то есть напряжение на них значительно превосходит напряжение, считающееся безопасным по условиям работы в закрытых помещениях, особенно бытовых. Однако такие лампы с успехом применяют для различного рода рекламных и сигнальных установок.

Рисунок 4. Лампы с длинным столбом тлеющего разряда

Преимуществом лампы тлеющего разряда является простота конструкции катода по сравнению с катодом лампы дугового разряда. Кроме того, тлеющий разряд менее чувствителен к наличию случайных примесей в газоразрядном пространстве, а следовательно, более долговечен.

Лампы дугового разряда

Дуговой разряд применяется практически во всех газоразрядных лампах. Связано это с тем, что при дуговом разряде ослабевает катодное падение напряжения и уменьшается его роль в балансе энергии лампы. Дуговые лампы могут быть изготовлены на рабочие напряжения равные напряжениям электрических сетей. При небольшой и средней плотности тока дугового разряда, а также при невысоком давлении в лампе источником излучения в основном выступает положительный столб, а свечение катода практически не имеет никакого значения. Повышая давление газа или паров металла наполняющих горелку прикатодная область постепенно уменьшается, а при значительных давлениях (более 3 × 10 4 Па) ее практически не остается совсем. Увеличением давления в лампах достигают высоких параметров излучения при небольших расстояниях между электродами. Высокие значения светоотдачи при совсем малых расстояниях можно получить при сверхвысоких давлениях (более 10 6 Па). С ростом давления и уменьшением расстояния между электродами сильно возрастает плотность тока и яркость шнура разряда.

При увеличении давления и плотности тока происходит образование изотермической плазмы, излучение которой в основном состоит из нерезонансных спектральных линий, возникающих при переходе электрона в атоме на более низкие, но не основные уровни.

Дуговой разряд используют в самых различных газах и парах металлов от самых низких давлений до сверхвысоких. В связи с этим конструкции колб дуговых ламп чрезвычайно разнообразны как по форме, так и по роду применяемого материала. Для ламп сверхвысокого давления большое значение приобретает прочность колб в условиях высоких температур, что привело к разработке соответствующих методов их расчета и исследования параметров.

После появления дугового разряда из катодного пятна выбивается основная масса электронов. Светящаяся катодная часть разряда начинается с катодного пятна, представляющего из себя небольшую светящуюся точку на спирали. Катодных пятен бывает несколько. В самокалящихся катодах катодное пятно занимает небольшую часть его поверхности, перемещаясь по ней по мере испарения оксида. Если плотность тока высока на материале катода возникают местные тепловые перегрузки. По причине таких перегрузок приходится применять катоды специальных сложных конструкций. Количество конструкций катодов разнообразно, но все они могут быть разделены на катоды ламп низкого давления, высокого давления и сверхвысокого давления.

Рисунок 5. Трубчатая газоразрядная лампа низкого давления

Рисунок 6. Газоразрядная лампа высокого давления

Рисунок 7. Газоразрядная лампа сверхвысокого давления

Разнообразие материалов, применяемых для колб дуговых ламп, большие значения токов требуют решения вопроса о создании специальных вводов. Подробно о конструкциях газоразрядных ламп можно прочитать в специальной литературе.

Классификация ламп

Аналогично лампам накаливания газоразрядные лампы отличаются между собой областью применения, видом разряда, давлением и видом наполняющего газа или паров металла, использованием люминофора. Если смотреть глазами изготовителей газоразрядных ламп то они могут также отличаться особенностями конструкций, важнейшими из которых являются форма и размеры колбы (газоразрядного промежутка), используемый материал из которого изготавливается колба, материал и конструкция электродов, конструкция цоколей и выводов.

При классификации газоразрядных ламп могут возникнуть некоторые затруднения связанные с многообразием признаков, на основе которых они могут быть классифицированы. В связи с этим для классификации принятой в настоящее время и используемой в качестве основы системы обозначений газоразрядных ламп, определен ограниченный ряд признаков. Стоит отметить, что для ртутных трубчатых низкого давления, являющихся наиболее массовыми газоразрядными лампами, существует своя система обозначений.

Итак, для обозначения газоразрядных ламп пользуются следующими основными признаками:

  1. рабочее давление (лампы сверхвысокого давления – более 10 6 Па, высокого давления – от 3 × 10 4 до 10 6 Па и низкого давления – от 0,1 до 10 4 Па);
  2. состав наполнителя, в котором происходит разряд (газ, пары металла и их соединений);
  3. наименование используемого газа или пара металла (ксенон – Кс, натрий – На, ртуть – Р и тому подобные);
  4. вид разряда (импульсный – И, тлеющий – Т, дуговой – Д).

Форма колбы обозначается буквами: Т – трубчатая, Ш – шаровая; если на колбу лампы наносится люминофор то в обозначение добавляется буква Л. Лампы делятся также по: области свечения – лампы тлеющего свечения и лампы со столбом разряда; по способу охлаждения – на лампы с принудительным и естественным воздушным охлаждением, лампы с водяным охлаждением.

Ртутные трубчатые люминесцентные лампы низкого давления принято обозначать проще. Например, в их обозначении первая буква Л говорит о том, что лампа принадлежит к данному виду источников света, последующие буквы – а их может быть одна, две или даже три, обозначают цветность излучения. Цветность является важнейшим параметром обозначения, так как цветность определяет область использования лампы.

Классификация газоразрядных ламп может также вестись по их значимости в области техники освещения: дуговые лампы высокого давления с исправленной цветностью; дуговые трубчатые лампы высокого давления; дуговые высокого давления; дуговые натриевые лампы низкого и высокого давления; дуговые высокого давления; дуговые шаровые сверхвысокого давления; дуговые ксеноновые трубчатые и шаровые лампы; люминесцентные лампы низкого давления; электродосветные, импульсные и другие виды специальных газоразрядных ламп.

Разрядной лампой называют ту лампу, которая излучает энергию в диапазоне, который является видимым. Стоит сразу отметить, что такие лампы очень эффективны в плане преобразования электрической энергии в световую энергию. На сегодняшний день наблюдается невероятный рост цен на электроэнергию, а так же на осветительную аппаратуру. И по этой причине начинается внедрение новых технологий, которые позволяют сократить затраты производителей, и сделать использование электрической энергии более доступным.


Разрядные лампы, которые используются для освещения, условно делят на три разные группы, по принципу того, какой источник света выходит наружу и используется человеком. В первую очередь, это дуговые ртутные люминесцентные, металлогалогенные и натриевые лампы высокого давления.
По устройству всех основных элементов, эти лампы мало чем отличаются друг от друга. В горелке из прочного тугоплавкого материала, который является очень стойким в химическом плане, возникает свечение. Это все происходит в присутствии газов и металлических паров. Подобный процесс называют электролюминесценцией. Для ртутных люминесцентных, а так же металлогалогенных ламп, горелку выполняют из кварца. Что касается натриевых ламп высокого давления, то их горелка сделана из поликорна - специальной керамики. Во всех горелках находится зажигающий газ, в роли которого могут выступать ксенон или аргон. Еще в них всегда присутствуют пары металлов под высоким давлением. Соответственно, в дуговых ртутных люминесцентных лампах находятся пары ртути, в металлогалогенных - пары ртути и смеси галоидов некоторых других металлов. В натриевых лампах высокого давления содержатся пары ртути и натрия.


Под воздействием напряжения, которое прикладывается к электродам горелки, происходит разряд. Чтобы зажигание произошло легко, во многих лампах устанавливают вспомогательный электрод. Сама горелка находится в большой колбе, которая обычно прозрачная (у натриевых ламп высокого давления, а так же у металлогалогенных ламп). У ртутных люминесцентных ламп колба изнутри покрыта люминофором, который оказывает влияние на качество цветопередачи.
Особое внимание следует уделить ртутной лампе, которая работает по принципу того, что источник света получается на основе соединений газового разряда и паров ртути. Они тоже делятся на группы, в зависимости от давления: это могут быть лампы с низким давлением, с высоким, и сверхвысоким.
В некоторых лампах внешняя колба отсутствует. Зачастую такими являются малогабаритные натриевые лампы высокого давления и металлогалогенные лампы. Чаще всего такие лампы используются для установки в прожекторы и другие подобные объекты. Все лампы характеризуются тем, что их мощность может достигать высоких показателей: около 1000 или 2000 Вт. Если металлогалогенные и натриевые лампы высокого давления используют для внутреннего освещения, их мощность колеблется от 35 до 70 Вт, у дуговых ртутных люминесцентных ламп в таком случае мощность будет равняться 50, 80, 125 Вт.


Лампу часто характеризует то, насколько она чувствительна к перепадам напряжения. Так вот, самые нечувствительные к колебаниям напряжения - это дуговые ртутные люминесцентные лампы. Если напряжение изменяется примерно на 15% в меньшую или большую сторону, то такая лампа повышает или понижает свой световой поток примерно на 30%.
Эти лампы можно эксплуатировать достаточно продолжительное время. Их срок службы равняется примерно пятнадцати тысячам часов. Но иногда срок службы натриевых ламп высокого давления может достигать и двадцати тысяч часов.
Важным моментом является световая отдача. Меньше всего световая отдача у дуговых ртутных люминесцентных ламп, и она равняется 40-60 лм/Вт. Далее можно отметить металлогалогенные лампы, которые находятся посередине, и их отдача колеблется от 60 до 100 лм/Вт. Количество световой отдачи прямо пропорционально зависит от мощности лампы.
Дуговые ртутные люминесцентные лампы традиционно применяются для освещения открытых территорий производственного, сельскохозяйственного назначения. Так же такие лампы хорошо подходят для освещения разнообразных складских помещений. Дуговые ртутные люминесцентные лампы отличаются большой экономией электроэнергии, и поэтому им часто отдают большее предпочтение. Еще ртутные лампы активно применяют для освещения городов, высоких производственных цехов, а так же для освещения больших строительных площадок.


Металлогалогенные лампы хорошо подходят для закрытых или открытых спортсооружений, некоторых зальных помещений в общественных зданиях, а так же для высоких производственных цехов с большими требованиями к цветопередаче. Лампы с хорошей мощностью, неважно какого типа, успешно используются при освещении территорий вокруг дома, гаража и т.д.
Можно сказать, что натриевые лампы высокого давления, а так же металлогалогенные лампы, у которых мощность от 70 до 100 Вт, уверенно вытесняют люминесцентные лампы в освещении общественных и жилых зданий. Практически все виды ламп активно используют для того, чтобы освещать фасады зданий снаружи, а так же для декоративного светового оформления города. В первую очередь, с их помощью освещают памятники, фонтаны, архитектурные сооружения, зеленые насаждения и т.д.
В то же время можно отметить некоторые недостатки, которые присущи всем видам разрядных ламп. В первую очередь, они довольно дорого стоят. Это очень сложная и серьезная технология, которая требует значительных затрат. Так же следует указать на большие размеры таких ламп.


Так же лампе нужно определенное время для того, чтобы выйти на нужный рабочий режим. На переменном токе промышленных частот очень часто происходит мерцание или гудение во время функционирования лампы. Особо опасными могут быть пары ртути, которые при деформации лампы могут проникнуть в помещение. По этой причине применять такие лампы следует только в светильниках, у которых есть защитный спектр, а так же использовать импульсные зажигающие устройства.
Сейчас специалисты занимаются исследованиями для того, чтобы модифицировать разрядные лампы и сделать их более удобными в применении, потому что на самом деле это очень качественная и экономичная технология. Самое важное заключается в том, что такие лампы активно используются в промышленности, а так же в городском освещении, что подтверждает их надежности и долговечность работы. В то же время, чтобы использовать лампы подобного типа, необходимо тщательно ознакомиться со всеми инструкциями по эксплуатации, и приобрести все элементы для нормального функционирования лампы.

Разрядным источником света или разрядной лампой (РЛ) называют электрическую лампу, в которой свет создается в результате электрического разряда в газе и (или) парах металла (ГОСТ 15049--81, СТ СЭВ 2737--80).

Принцип устройства и применяемые типы разрядов.

Подавляющее большинство разрядных ламп представляют собой прозрачную для оптического излучения колбу цилиндрической, сферической или иной формы. В колбу герметически впаяны два основных электрода, между которыми происходит разряд. Иногда для облегчения зажигания впаивают дополнительные электроды. Внутреннее пространство колбы после удаления воздуха и тщательного обезгаживания лампы (удаление сорбированных в материале колбы и электродах паров воды и других газов при помощи нагрева под откачкой) наполняется определенным газом (чаще всего инертным) до различного давления или инертным газом и небольшим количеством металла с высокой упругостью паров, например ртутью, натрием и др. Начиная с середины 60-х годов широкое распространение получают лампы, в которые кроме инертного газа и ртути вводят специальные излучающие добавки, представляющие собой большей частью галогениды различных металлов.

Существует категория разрядных ламп с электродами, работающими в открытой атмосфере, у которых разряд происходит в воздухе и в парах вещества электродов. Это угольные дуги. В этом типе ламп во время работы расходуется материал электродов. В специальных типах ламп разряд горит в проточном газе.

Существуют также лампы, в которых используется высокочастотный безэлектродный разряд. Они представляют собой запаянную колбу без электродов, содержащую необходимые газы или пары.

В РЛ стационарного действия обычно используются два типа разряда: тлеющий и дуговой, в источниках импульсного действия -- так называемый импульсный разряд. В соответствии с этим различают лампы тлеющего, дугового и импульсного разрядов.

Тип разряда, устанавливающийся в лампе после зажигания, определяется условиями во внешней цепи (значениями питающего напряжения, балластного сопротивления), типом катода и давлением газа или пара, наполняющего лампу.

Тлеющий разряд происходит при малых плотностях тока на катоде и низких давлениях газа или пара, не превышающих нескольких тысяч паскалей (десятки мм. рт. ст.). Его особенностью является большое падение напряжения у катода, составляющее 50--400 В.

Дуговой разряд отличается от тлеющего высокими плотностями тока на катоде (102--104 А/см2) и малым околокатодным падением потенциала (5--15 В). Он может происходить в широком диапазоне давлений (от 0,1 до 1 * 107 Па) и токов (от десятых долей до сотен ампер). По физическим процессам и по характеру излучения он может быть разделен на приэлектродные области и столб. Столб дуговых разрядов низкого давления подобен столбу тлеющих разрядов, происходящих при одинаковых давлениях, диаметрах и токах. Столб дуг высокого и сверхвысокого давлений имеет ряд характерных особенностей, рассмотренных в гл. 4, 14--19.

Импульсный разряд -- разновидность нестационарного разряда, отличающаяся высокой концентрацией мощности при малой длительности (не превышающей 5-Ю-3 с).

В РЛ стационарного действия наиболее широко используются дуговые разряды, так как с их помощью удается создавать источники с весьма разнообразными характеристиками, обладающие высокой эффективностью при сравнительно низких рабочих напряжениях.

В подавляющем большинстве ламп используется излучение столба, обладающее значительно более высоким КПД по сравнению с излучением приэлектродных частей и позволяющее в широких пределах изменять размеры и характеристики светящейся области. Излучение приэлектродных областей, например тлеющее свечение, используется только в специальных типах ламп.

Классификация PЛ может проводиться по различным признакам. Ввиду большого разнообразия свойств РЛ и применяемости одних и тех же ламп в различных областях ниже приведена классификация по физическим признакам, которые характеризуют все основные свойства разряда, такие, как спектр излучения, распределение интенсивности излучения в спектре, яркость, градиент потенциала, энергетический КПД и др. Все эти свойства разряда определяются в первую очередь составом газовой среды, в которой происходит разряд, парциальными давлениями компонентов газовой смеси и силой тока. Вместе с типом разряда, используемой областью свечения и размерами газового промежутка, они определяют мощность и напряжение, габариты и конструкцию лампы и ее узлов, их тепловой режим, выбор материалов и связанные с этим особенности эксплуатации и области применения.

По составу газовой или паровой среды, в которой происходит разряд, лампы делят на лампы с разрядом в газах, в парах металлов и в парах металлов и их соединений.

По величине рабочего давления -- на лампы низкого давления (НД) примерно от 0,1 Па до 25 кПа, высокого давления (ВД) от 25 до 1 - 103 кПа и сверхвысокого давления (СВД) больше 1 - 103 кПа.

По типу разряда -- на лампы дугового, тлеющего и импульсного разрядов.

По области свечения -- на область столба и область тлеющего свечения.

По типу источника излучения -- на:

газо- или паросветные, в которых основным источником излучения являются возбужденные атомы, молекулы или рекомбинирующиеся ионы;

фотолюминесцентные (называемые для краткости просто люминесцентные), в которых основным источником излучения являются люминофоры, возбуждаемые излучением разряда;

электродосветные, в которых основным источником излучения являются электроды, раскаленные в разряде до высокой температуры.

У большинства фотолюминесцентных и электродосветных ламп к основному виду излучения примешивается излучение разряда, так что они являются, по существу, источниками смешанного излучения.

По форме колбы лампы со столбом подразделяют на:

трубчатые или линейные -- лампы в цилиндрических колбах, у которых расстояния между электродами в 2 и более раз превышают внутренний диаметр трубки;

капиллярные -- в трубках с внутренним диаметром меньше 4 мм;

«шаровые» -- лампы с расстоянием между электродами, меньшим или равным внутреннему диаметру колбы (колбы ламп имеют часто форму шара или близкую к ней, откуда и получили свое название), их называют также лампами с короткой или средней длиной дуги.

По охлаждению лампы подразделяют на лампы с естественным и принудительным (воздушным или водяным) охлаждением.

В некоторых типах ламп разрядную колбу, часто называемую горелкой, помещают во внешнюю колбу, которая чаще всего служит для обеспечения теплового режима горелки, но вместе с тем может выполнять и другие функции.

Области применения PЛ.

Давно было известно, что ртутные лампы высокого давления и натриевые лампы низкого давления обладают высокими световыми отдачами. Однако попытки применения этих ламп для целей освещения не имели успеха из-за сильного искажения цветопередачи, особенно цвета человеческой кожи. Впервые этот недостаток удалось преодолеть в ртутных люминесцентных лампах низкого давления. Их появление в 1938 г. ознаменовало собой новый этап в развитии разрядных источников света. Впервые были созданы ЛЛ, дающие излучение с непрерывным спектром практически любого состава и обладающие при этом световой отдачей и сроком службы, в несколько раз превышающими световые отдачи и сроки службы ламп накаливания. Световые отдачи современных ЛJI достигают 85--90 лм/Вт, а сроки службы 12--15 тыс. ч и более. В настоящее время ЛЛ являются наиболее массовым разрядным источником света, применяемым для освещения. Их мировой выпуск достигает почти 1 млрд. ламп в год.

В начале 50-х годов появились ртутные лампы высокого давления с исправленной цветностью типа ДРЛ. Эти лампы, обладающие высокой светоотдачей (45--60 лм/Вт) и сроком службы 10--15 тыс. ч, получили в настоящее время весьма широкое применение. Их мировой выпуск достигает многих десятков миллионов ламп в год и продолжает расти.

В 60-х годах были открыты новые, исключительно плодотворные направления в создании разрядных ламп высокой интенсивности с самым различным спектром излучения и более высокими КПД, чем у существовавших до этого. Впервые для ламп высокой интенсивности удалось перешагнуть рубеж в 100 лм/Вт. Уже разработано и выпускается большое число новых типов, которые по многим параметрам значительно превосходят ртутные лампы высокого давления типа ДРЛ и занимают видное место в семье разрядных источников света. Это натриевые лампы высокого давления в колбах из кристаллического оксида алюминия, широко применяемые для наружного освещения, и различные типы так называемых металлогалогенных ламп.

Наряду с освещением разрядные лампы находят многочисленные и весьма важные применения во многих отраслях народного хозяйства, в новейшей технике и в военном деле, что объясняется особенностями электрического разряда, которые позволяют создавать источники излучения с очень разнообразным сочетанием параметров. Путем подбора соответствующего наполнения и условий разряда удается создавать высокоэффективные источники излучения практически в любой части не только видимого, но также УФ- и ИК-областей спектра, при этом можно получать спектры излучения, состоящие из одиночных линий, многолинейчатые и непрерывные.

Это достоинство РЛ открыло им исключительно широкие возможности применения не только для освещения, но также для многочисленных специальных целей. Так, например, в промышленности, сельском хозяйстве, медицине и других отраслях народного хозяйства широко используются фотолюминесценция, фотохимические, биологические, бактерицидное и другие действия УФ-излучения; красное излучение неона применяется для сигнального освещения, ИК-излучение -- для лучистого нагрева, сигнализации, связи и т. д.

Разряды высокого и особенно сверхвысокого давления имеют высокие яркости в различных областях спектра, в десятки и сотни раз превосходящие яркости ламп накаливания, благодаря чему они с успехом применяются в различных светооптических приборах и установках.

Малая инерционность излучения разряда является недостатком для общего освещения, поскольку она приводит к большим пульсациям, светового потока при работе в стандартных сетях переменного тока с частотой 50 Гц. В то же время она открывает РЛ множество специальных применений там, где требуется модуляция излучения.

Широкое и весьма разнообразное применение находят импульсные лампы, дающие вспышки излучения исключительно высокой яркости и очень малой длительности. Они применяются в многочисленных приборах и установках для наблюдения и изучения быстродвижущихся частей машин и механизмов (в стробоскопах), при фотографировании и изучении быстро- протекающих процессов, аэрофотосъемке, оптической дальнометрии и т. д. В настоящее время импульсные лампы широко применяются для оптической накачки лазеров.

Наряду со многими достоинствами РЛ имеют и недостатки, главным из которых является некоторая сложность их включения в сеть, связанная с особенностями разряда. При зажигании требуются более высокие напряжения, чем при устойчивом горении. Для обеспечения устойчивого режима горения в цепь каждой лампы приходится включать балласт, ограничивающий ток разряда требуемыми пределами.

Характеристики ламп с разрядом в парах металлов или веществ зависят от их теплового режима, и их нормальный режим устанавливается только спустя некоторое время после включения. Повторное зажигание ламп с разрядом в парах металла при высоком и сверхвысоком давлениях без специальных приемов возможно только по истечении некоторого времени после выключения.

Области применения

Благодаря линейчатому спектру излучения газоразрядные лампы первоначально применялись лишь в специальных случаях, когда получение заданного спектрального состава излучения являлось фактором более важным, чем значение световой отдачи. Возникла широкая номенклатура , предназначенных для применения в научно-исследовательской аппаратуре, которые объединяют под одним общим названием - спектральные лампы.

Рисунок 1. Спектральные лампы с парами натрия и магния

Возможность создания интенсивного ультрафиолетового излучения, отличающегося высокими химической активностью и биологическим действием, привела к использованию газоразрядных ламп в химической и полиграфической промышленности, а также в медицине.

Короткая дуга в газе или парах металла при сверхвысоком давлении отличается высокой яркостью, что позволило в настоящее время отказаться от открытой угольной дуги в прожекторной технике.

Применение люминофоров, позволившее получать газоразрядные лампы с непрерывным спектром излучения в видимой области, определило возможность внедрения газоразрядных ламп в осветительные установки и вытеснение из ряда областей ламп накаливания.

Особенности изотермической плазмы, обеспечивающей получение спектра излучения, близкого к излучению тепловых источников, при температурах, недоступных в лампах накаливания, привели к разработке сверхмощных осветительных ламп со спектром, практически совпадающим с солнечным.

Практическая безынерционность газового разряда позволила применить газоразрядные лампы в фототелеграфе и вычислительной технике, а также создать импульсные лампы, концентрирующие в кратковременном световом импульсе огромную световую энергию.

Видео 1. Импульсные лампы

Требования снижения расхода электроэнергии во всех областях народного хозяйства расширяют применение экономичных газоразрядных ламп, объем выпуска которых непрерывно растет.

Лампы тлеющего разряда

Как известно, нормальный тлеющий разряд возникает при малых плотностях тока. Если при этом расстояние между катодом и анодом настолько мало, что в его пределах не может разместиться столб разряда, то имеют место катодное свечение и отрицательное тлеющее свечение, покрывающие поверхность катода. Расход мощности в лампе тлеющего разряда весьма мал, так как мал ток, а напряжение определяется лишь катодным падением. Излучаемый лампой световой поток незначителен, однако совершенно достаточен для того, чтобы зажигание лампы было заметным, особенно если разряд происходит в газе, дающем цветное излучение, например в неоне (длина волны 600 нм, красный цвет излучения). Такие лампы различной конструкции широко используют в качестве индикаторов. Так называемые цифровые лампы являлись ранее составной частью многих автоматических устройств с цифровыми указателями.

Рисунок 3. Лампа тлеющего разряда предназначенная для индикации цифр

При длинном газоразрядном промежутке с расстоянием между электродами значительно большим, чем прикатодная область, основное излучение разряда сосредотачивается в столбе разряда, который при тлеющем разряде отличается от столба при дуговом разряде лишь меньшей плотностью тока. Излучение такого столба может иметь высокую световую отдачу при большой длине. Высокое значение катодного падения напряжения в тлеющем разряде обусловило разработку ламп на высокое напряжение питания, то есть напряжение на них значительно превосходит напряжение, считающееся безопасным по условиям работы в закрытых помещениях, особенно бытовых. Однако такие лампы с успехом применяют для различного рода рекламных и сигнальных установок.

Рисунок 4. Лампы с длинным столбом тлеющего разряда

Преимуществом лампы тлеющего разряда является простота конструкции катода по сравнению с катодом лампы дугового разряда. Кроме того, тлеющий разряд менее чувствителен к наличию случайных примесей в газоразрядном пространстве, а следовательно, более долговечен.

Лампы дугового разряда

Дуговой разряд применяется практически во всех газоразрядных лампах. Связано это с тем, что при дуговом разряде ослабевает катодное падение напряжения и уменьшается его роль в балансе энергии лампы. Дуговые лампы могут быть изготовлены на рабочие напряжения равные напряжениям электрических сетей. При небольшой и средней плотности тока дугового разряда, а также при невысоком давлении в лампе источником излучения в основном выступает положительный столб, а свечение катода практически не имеет никакого значения. Повышая давление газа или паров металла наполняющих горелку прикатодная область постепенно уменьшается, а при значительных давлениях (более 3 × 10 4 Па) ее практически не остается совсем. Увеличением давления в лампах достигают высоких параметров излучения при небольших расстояниях между электродами. Высокие значения светоотдачи при совсем малых расстояниях можно получить при сверхвысоких давлениях (более 10 6 Па). С ростом давления и уменьшением расстояния между электродами сильно возрастает плотность тока и яркость шнура разряда.

При увеличении давления и плотности тока происходит образование изотермической плазмы, излучение которой в основном состоит из нерезонансных спектральных линий, возникающих при переходе электрона в атоме на более низкие, но не основные уровни.

Дуговой разряд используют в самых различных газах и парах металлов от самых низких давлений до сверхвысоких. В связи с этим конструкции колб дуговых ламп чрезвычайно разнообразны как по форме, так и по роду применяемого материала. Для ламп сверхвысокого давления большое значение приобретает прочность колб в условиях высоких температур, что привело к разработке соответствующих методов их расчета и исследования параметров.

После появления дугового разряда из катодного пятна выбивается основная масса электронов. Светящаяся катодная часть разряда начинается с катодного пятна, представляющего из себя небольшую светящуюся точку на спирали. Катодных пятен бывает несколько. В самокалящихся катодах катодное пятно занимает небольшую часть его поверхности, перемещаясь по ней по мере испарения оксида. Если плотность тока высока на материале катода возникают местные тепловые перегрузки. По причине таких перегрузок приходится применять катоды специальных сложных конструкций. Количество конструкций катодов разнообразно, но все они могут быть разделены на катоды ламп низкого давления, высокого давления и сверхвысокого давления.

Рисунок 5. Трубчатая газоразрядная лампа низкого давления

Рисунок 6. Газоразрядная лампа высокого давления

Рисунок 7. Газоразрядная лампа сверхвысокого давления

Разнообразие материалов, применяемых для колб дуговых ламп, большие значения токов требуют решения вопроса о создании специальных вводов. Подробно о конструкциях газоразрядных ламп можно прочитать в специальной литературе.

Классификация ламп

Аналогично лампам накаливания газоразрядные лампы отличаются между собой областью применения, видом разряда, давлением и видом наполняющего газа или паров металла, использованием люминофора. Если смотреть глазами изготовителей газоразрядных ламп то они могут также отличаться особенностями конструкций, важнейшими из которых являются форма и размеры колбы (газоразрядного промежутка), используемый материал из которого изготавливается колба, материал и конструкция электродов, конструкция цоколей и выводов.

При классификации газоразрядных ламп могут возникнуть некоторые затруднения связанные с многообразием признаков, на основе которых они могут быть классифицированы. В связи с этим для классификации принятой в настоящее время и используемой в качестве основы системы обозначений газоразрядных ламп, определен ограниченный ряд признаков. Стоит отметить, что для ртутных трубчатых низкого давления, являющихся наиболее массовыми газоразрядными лампами, существует своя система обозначений.

Итак, для обозначения газоразрядных ламп пользуются следующими основными признаками:

  1. рабочее давление (лампы сверхвысокого давления – более 10 6 Па, высокого давления – от 3 × 10 4 до 10 6 Па и низкого давления – от 0,1 до 10 4 Па);
  2. состав наполнителя, в котором происходит разряд (газ, пары металла и их соединений);
  3. наименование используемого газа или пара металла (ксенон – Кс, натрий – На, ртуть – Р и тому подобные);
  4. вид разряда (импульсный – И, тлеющий – Т, дуговой – Д).

Форма колбы обозначается буквами: Т – трубчатая, Ш – шаровая; если на колбу лампы наносится люминофор то в обозначение добавляется буква Л. Лампы делятся также по: области свечения – лампы тлеющего свечения и лампы со столбом разряда; по способу охлаждения – на лампы с принудительным и естественным воздушным охлаждением, лампы с водяным охлаждением.

Ртутные трубчатые люминесцентные лампы низкого давления принято обозначать проще. Например, в их обозначении первая буква Л говорит о том, что лампа принадлежит к данному виду источников света, последующие буквы – а их может быть одна, две или даже три, обозначают цветность излучения. Цветность является важнейшим параметром обозначения, так как цветность определяет область использования лампы.

Классификация газоразрядных ламп может также вестись по их значимости в области техники освещения: дуговые лампы высокого давления с исправленной цветностью; дуговые трубчатые лампы высокого давления; дуговые высокого давления; дуговые натриевые лампы низкого и высокого давления; дуговые высокого давления; дуговые шаровые сверхвысокого давления; дуговые ксеноновые трубчатые и шаровые лампы; люминесцентные лампы низкого давления; электродосветные, импульсные и другие виды специальных газоразрядных ламп.